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Introduction

These notes are a work in progress and subject to editing/improvement.
I welcome corrections and comments.

Most of the results stated here are given without proof in the notes.
During the course, some proofs will be given in the classroom, while
other results will be set for the student to prove during homework.
This is a topic that rewards a hands-on approach, as you get used to
the style of arguments topologists like to use.

Starred sections are deemed beyond the scope of the course, but may
be interesting to you.

I hope you enjoy the course!





1 Metric spaces

Metric spaces

Metric spaces are a way of abstractly adding a notion of “distance”
to a set, capturing what we would intuitively recognise as important
properties of “distance” from familiar settings like Euclidean space.

Definition 1.1. Let X be a set. We call a function d : X × X → R a
metric and the pair (X, d) a metric space if the following properties are
satisfied.

(i) non-degeneracy: d(x, y) = 0 if and only if x = y.

(ii) symmetry: d(x, y) = d(y, x) for all x, y ∈ X.

(iii) triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
The fact that distances are always
positive is often included as an axiom
of a metric space. This exercise shows
this is redundant as an axiom.

Exercise 1.1. Let (X, d) be a metric space. Prove that for all points
x, y ∈ X, the distance d(x, y) ≥ 0.

Example 1.2. Here are some fundamental examples of metric spaces.
In each case, you should confirm the functions have the three re-
quired properties to be a metric.

• Any set X with the function

d(x, y) =

{
0 if x = y
1 if x 6= y.

This is called discrete metric on X.

• Euclidean space Rn with the function d2 : Rn ×Rn → R given by

d2(x, y) =

(
n

∑
i=1
|xi − yi|2

)1/2

.

This is called the standard, or Euclidean metric. (The verification
that this is a metric is quite easy, except for the triangle inequality,
for which you may want to look up the Cauchy inequality.)
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• The function d1 : Rn ×Rn → R given by This is known as the Manhattan metric,
because it measures the distance from
(a, b) to (c, d) in R2 as if they lay on
a grid: “first walk in the x-direction
a distance of c − a, then walk in the
y-direction a distance of d− b.

d1(x, y) =
n

∑
i=1
|xi − yi|

is also a metric. Note this coincides with d2 when n = 1.

Exercise 1.2. Let X be the set of cities with a major airport in the USA.
Consider the following numbers associated to cities x and y.

(a) The distance, in miles, from x to y as the crow flies.

(b) The distance, in miles, from x to y by road.

(c) The time, in minutes, of the shortest flight from x to y.

(d) The cost, in dollars, of the cheapest flight from x to y.

Discuss informally which conditions (i) to (iv) apply to (a)-(d).

Exercise 1.3. Let X = {a, b, c} with a, b and c distinct. Write down
functions dj : X× X → R≥0, such that:

(a) d1 satisfies conditions (i) and (ii) but not (iii).

(b) d2 satisfies conditions (ii) and (iii) and d2(x, y) = 0 implies x = y,
but it is not true that x = y implies d2(x, y) = 0.

(c) d3 satisfies conditions (ii) and (iii) and x = y implies d3(x, y) = 0.
but it is not true that d3(x, y) = 0 implies x = y.

(d) d4 satisfies conditions (i) and (iii) but not (ii).

Normed vector spaces

Most important metrics on vector spaces arise from the slightly more
refined notion of a norm.

Definition 1.3. Let V be a vector space over F (with F = R or F = C)
and N : V → R a map such that, writing N(u) = ‖u‖, the following
properties hold.

(i) positivity: ‖u‖ ≥ 0 for all u ∈ V.

(ii) non-degeneracy: If ‖u‖ = 0, then u = 0.

(iii) scalar linearity: If λ ∈ F and u ∈ V, then ‖λu‖ = |λ|‖u‖.

(iv) triangle inequality: If u, v ∈ V, then ‖u‖+ ‖v‖ ≥ ‖u + v‖.

Then we call ‖ ‖ a norm and say that (V, ‖ ‖) is a normed vector space.

Exercise 1.4. By putting λ = 0 in Definition 1.3 (iii), show that ‖0‖ = 0.

Any normed vector space can be made into a metric space in a
natural way but not all metrics on vector spaces come from norms.
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Lemma 1.4. If (V, ‖ ‖) is a normed vector space, then the condition

d(u, v) = ‖u− v‖

defines a metric d on V.

Exercise 1.5.

(a) If V is a vector space over R and d is a metric derived from a
norm in the manner described above, then, if u ∈ V we have
d(0, 2u) = 2d(0, u).

(b) If V is non-trivial (i.e. not zero-dimensional) vector space over R

and d is the discrete metric on V, then d cannot be derived from a
norm on V.

Example 1.5. Let p ∈ (0, ∞). Then for x ∈ Rn, the quantities

||x||p =

(
n

∑
j=1
|xj|p

)1/p

and
||x||∞ = max{|x1|, |x2|, . . . , |xn|}

are norms. We write dp and d∞ for the corresponding metrics. Note
that d2 agrees with the usual Euclidean metric already defined. (To
verify these are norms, the triangle inequality is the most difficult to
check. For this, you may want to look up the Minkowski inequality.)

Example 1.6. Let S be any set and write B(S) for the set of bounded
real-valued functions with domain S. Then the sup norm on B(S) is

|| f || = sup
s∈S
| f (s)|.

Definition 1.7. Two metrics d and ρ on a set X are Lipshitz equivalent if
there exist constants K > 0 and L > 0 such that for all x, y ∈ X

Kρ(x, y) ≤ d(x, y) ≤ Lρ(x, y).

Exercise 1.6. Given a set X, show that Lipshitz equivalence is an
equivalence relation on the set of metrics on X.

As Lipshitz equivalence is an equiva-
lence relation, this shows dp and dq are
Lipshitz equivalent for all p, q ∈ (0, ∞).

In fact, all metrics on Rn derived from
norms are Lipshitz equivalent. We leave
it to the interested reader to investigate.

Theorem 1.8. For any p ∈ (0, ∞) the metrics dp and d∞ on Rn are Lipshitz
equivalent.

Proof. We leave it to the reader to convince themselves that the
following inequalities hold

||x||∞ ≤ ||x||p ≤ n1/p||x||∞

The theorem then follows from the definitions of dp and d∞.
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Open sets and continuity in metric spaces

In Analysis, one sees the definition of an open disc of radius r > 0
around a point x ∈ Rn. This is simply the set of points y ∈ Rn a
distance less than or equal to the centre point x. This notion is easily
generalised to metric spaces.

Definition 1.9. Let (X, d) be a metric space. Then, given x ∈ X and
r > 0, the set

B(x; r) = {y ∈ X | d(x, y) < r}

is called the open ball around x of radius r.

It was Georg Cantor who first identified the following particularly
“well behaved” class of subsets of a metric space.

Figure 1.1: Georg Cantor (1845-1918)
pioneered set theory and infinite
cardinal numbers. His mathematical
ideas were controversial throughout
his career, but they turned out to be
influential and visionary.

Definition 1.10. Let (X, d) be a metric space. Then a subset U ⊆ X is
open if, for every x ∈ U, there exists ε > 0 such that B(x; ε) ⊆ U.

Example 1.11. (i) Let (X, d) be a metric space. Then, for all x ∈ X
and r > 0, the open ball B(x; r) is an open set. To see this, let
y ∈ B(x; r). Then B(y; R) ⊆ B(x; r) for R = r− d(x, y).

(ii) Let Rn have the Euclidean metric. Then for every x ∈ X, the sin-
gleton {x} is not open. However the complement of the singleton
Rn \ {x} is open. You should verify these facts.

(iii) Let (X, d) be any set with the discrete metric. Then it is straightfor-
ward to confirm that all subsets of X are open.

Lipshitz equivalent metrics are important for the following reason.

Lemma 1.12. If d and ρ are Lipshitz equivalent metrics on a set X, then
U ⊆ X is open with respect to d if and only if it is open with respect to ρ.

Exercise 1.7. Let (X, d) be a metric space. Define a function ρ : X ×
X → R by ρ(x, y) = d(x, y)/(1 + d(x, y)). Show that ρ is a metric.
Show that a set is open with respect to d if and only if it is open with
respect to ρ. Find an example to show that d and ρ are in general not
Lipshitz equivalent.

The next result is a foundational observation, and is the reason
Cantor considered open sets so “well-behaved”. It’s also pretty easy
to verify.

Theorem 1.13. Let (X, d) be a metric space. Then the following are true.

(i) The empty set ∅ and the space X are open sets.

(ii) The union of arbitrarily many open sets is open:
If Uα in an open set in X for all α ∈ I then

⋃
α∈I Uα is open.1 1 I is some arbitrary indexing set,

possibly (uncountably) infinite
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(iii) The intersection of finitely many open sets is open:
If Ui is an open set in X for all 1 ≤ i ≤ n, then

⋂n
i=1 Ui is open.

There is a straightforward example to show that condition (iii) really
needs the intersection to be finite to be true.

Example 1.14. Working in R with the usual metric, consider the
collection of open intervals Ui = B(0; 1/i) = (−1/i, 1/i), for i ∈ Z+.
Then

⋂∞
i=i Ui = {0}, and this is not open.

We used open balls to define what it generally meant for a subset of
a metric space to be open. We can go a little further, and use them to
describe open sets in the following way.

Theorem 1.15. Let (X, d) be a metric space. Then U ⊆ X is open if and
only if U is a union of open balls. In other words, there exists a collection
of points xα ∈ X and radii εα > 0 for α ∈ I some indexing set , such that
U =

⋃
α∈I B(xα; εα).

In Analysis, we see the ε-δ definition for continuity of a function
f : R→ R.2 This is very easy to generalise to metric spaces. 2 For all x ∈ R and for all ε > 0, there

exists δ > 0 such that

|x− y| < δ =⇒ | f (x)− f (y)| < ε.Definition 1.16. Let (X, d) and (Y, ρ) be metric spaces. A function
f : X → Y is called continuous if, for all t ∈ X and ε > 0, there exists
δ > 0 such that

d(s, t) < δ =⇒ ρ( f (s), f (t)) < ε.

Lemma 1.17. If (X, d), (Y, ρ) and (Z, σ) are metric spaces, and f : X → Y,
g : Y → Z are continuous, then the composition g ◦ f : X → Z is continuous.

In fact, this obvious generalisation of the definition of continuity has
a remarkable rephrasing in terms of open sets.

Theorem 1.18. Let (X, d) and (Y, ρ) be metric spaces. A function f : X →
Y is continuous if and only if for every open set U ⊆ Y, the preimage
f−1(U) ⊆ X is open in X.3 3 Note that this does not say that the

images of open sets are open when f is
continuous. This is generally not true.Exercise 1.8. Reprove Lemma 1.17 using this rephrasing of continuity

to make it about open sets. Look how easy it is now!

Closed sets in metric spaces

Cantor identified a second class of very well behaved sets, which
we discuss in this section. We need to first discuss limits in metric
spaces. Again, this idea from Analysis generalise almost immediately
to metric spaces.
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Definition 1.19. Let x0, x1, x2, . . . ∈ X be a sequence of elements in a
metric space (X, d). We call x ∈ X the limit of the sequence if, for all
ε > 0 there exists N ≥ 0 such that

n ≥ N =⇒ d(xn, x) < ε.

As usual, we write “xn → x as n → ∞” or “limn→∞ xn = x” if this is
the case.

Perhaps you have never thought about the possibility that a sequence
might have more than one limit. Don’t worry, in metric spaces, every-
thing still behaves as one would hope.

Lemma 1.20. Let (X, d) be a metric space. If a sequence xn has a limit, then
that limit is unique.

Here is a classic exercise from Analysis, transported into the context
of metric spaces.

Exercise 1.9. Show that a function f : X → Y between metric space
(X, d) and (Y, ρ) is continuous if and only if for every convergent
sequence xn → x in X, the sequence f (xn)→ f (x) in Y.

Definition 1.21. Let (X, d) be a metric space and let A ⊆ X be a
subset. We say A is closed if, whenever x is the limit of a sequence of
elements in A, the element x is also in A.

Closed sets satisfy a similar (but different!) collection of conditions to
open sets.

Theorem 1.22. Let (X, d) be a metric space. Then the following are true.

(i) The empty set ∅ and the space X are closed sets.

(ii) The intersection of arbitrarily many closed sets is closed:
If Aα is a closed set in X for all α ∈ I then

⋂
α∈I Aα is closed.4 4 I is some arbitrary indexing set,

possibly (uncountably) infinite
(iii) The union of finitely many closed sets is closed:

If Ai is a closed set in X for all 1 ≤ i ≤ n, then
⋃n

i=1 Ai is closed.

Compare conditions (i) of Theorems 1.13 and 1.22. We immediately
see that some sets are open and closed! This differs from the normal
English usage, where you might expect “not open” to be equivalent
to “closed”. For a given set U ⊆ X, you should generally expect
openness for A and closedness for A to be unrelated features, to be
analysed separately. A set that is open and closed is some-

times called “clopen”, but I think this
word is kind of yucky...On the other hand, there is a deep connection between the general

concepts of open and closed sets.

Theorem 1.23. Let (X, d) be a metric space. Then U ⊆ X is open if and
only if X \U is closed.
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Exercise 1.10. Using De-Morgan’s laws and Theorem 1.23, give a quick
proof of Theorem 1.22, by considering Theorem 1.13.

Exercise 1.11. Prove that a function f : X → Y between metric space
(X, d) and (Y, ρ) is continuous if and only if f−1(A) is closed in X,
for every closed set A ⊆ Y.

Example 1.24. A nice argument to show that the n-sphere

Sn = {x ∈ Rn+1 | ||x|| = 1} ⊆ Rn+1

is closed if to observe that the norm map

Rn+1 → R

We include the following remark, for the record.

Remark 1.25. There is some confusing terminology in this part of
metric space theory. Let A ⊆ X be a subset of a metric space.

• A limit point of A is a point x ∈ X such that every open ball
around x contains infinitely many points of A.

• An isolated point of A is a point x ∈ A such that B(x; ε) ∩ A = {x}
for some ε > 0.

Clearly an isolated point x ∈ A is not a limit point of A. However,
confusion might arise, because an isolated point x is a limit of a
sequence in A (the constant sequence x, x, x, x, . . . ). Just be careful...





2 Topological spaces

Topological spaces

We now investigate how much of the work we have done on metric
spaces can be recovered when we strip away the metric but retain
a concept of open set. The idea is to change perspective, by mak-
ing Theorem 1.13 a definition, rather than a consequence of other
definitions.

Definition 2.1. Let X be a set and τ be a collection of subsets of X.
We call τ a topology on X, and the pair (X, τ) a topological space if the
following conditions are satisfied.

(i) The empty set ∅ ∈ τ and the space X ∈ τ.

(ii) If Uα ∈ τ for all α ∈ I then
⋃

α∈I Uα ∈ τ.1 1 I is some arbitrary indexing set,
possibly (uncountably) infinite

(iii) If Ui ∈ τ for all 1 ≤ i ≤ n, then
⋂n

i=1 Ui ∈ τ.

We refer to the elements U ∈ τ of a topology as open sets in that
topology.

Example 2.2. Given a metric space (X, d), let τ be the collection of all
open sets in the sense of a metric space (Definition 1.10). Then τ is
a topology by Theorem 1.13. We call this the topology on X induced
by the metric. If a topology is induced by some metric, we call the
topological space metrisable.

Example 2.3. As open sets in the metrics dp all coincide, this shows
these all induce the same topology on Rn.

Here are two “trivial” topologies you can put on any set X.

Definition 2.4. Let X be a set.

(a) The topology τ = P(X) consisting of all possible subsets of X is
called the discrete topology. Recall, P(X) denotes the power set; the

set of all possible subsets of X.
(b) The topology τ = {∅, X} is called the indiscrete topology.
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Exercise 2.1. Let X be a set. Confirm that the discrete topology and the
indiscrete topology are indeed topologies.

Exercise 2.2. Let X be a set.

(i) Prove that the discrete metric on X induces the discrete topology.

(ii) Prove that if X has at least 2 elements then no metric on X induces
the indiscrete topology.

So long as you are careful to satisfy the three properties of a topology,
you can cook up all sorts of topologies on sets.

Example 2.5. Let X = {1, 2, 3, 4}. Then τ = {∅, X, {1}, {3}, {1, 3}} is
a topology.

Exercise 2.3. Let X = {1, 2, 3}. How many elements are in P(X)? How
many elements are in P(P(X))? How many topologies are there
on X?

We base the more abstract definition of a closed set on Theorem 1.23.

Definition 2.6. Let (X, τ) be a topological space. Then a set A ⊆ X is
closed if X \ A is open.

The reader should immediately verify the following theorem.

Theorem 2.7. Let (X, τ) be a topological space. Then the following are true.

(i) The empty set ∅ and the set X are closed.

(ii) If Aα ⊆ X is closed for all α ∈ I then
⋂

α∈I Aα is closed.2 2 I is some arbitrary indexing set,
possibly (uncountably) infinite

(iii) If Ai ⊆ X is closed for all 1 ≤ i ≤ n, then
⋃n

i=1 Ai is closed in X.

Remark 2.8. The entire theory of point-set topology could be devel-
oped using closed sets in our preferred collection of “interesting
sets” and making the conditions in Theorem 2.7 axioms rather than
consequences. There is no particularly good reason topologies are
defined with open sets and not closed – that’s just how things went!

Interior and closure

Given an arbitrary subset A ⊆ X of a topological space X, we wish
to consider the “largest” open set contained in A and the “smallest”
closed set containing A. This idea of “largest” and “smallest” is
captured in the following definition.

Definition 2.9. Let (X, τ) be a topological space and A ⊆ X a subset.

(a) The interior of A is the union of all open sets contained in A.

(b) The closure of A is the intersection of all closed sets containing A.
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The interior is open, as an arbitrary union of open sets is open. Simi-
larly, the closure is closed, as it is an intersection of closed sets.

Exercise 2.4. Let (X, τ) be a topological space and let A ⊆ X be a
subset.

(i) Show that (int(A))c = cl(Ac)

(ii) Show that int(Ac) = (cl(A))c

Here are some popular alternative ways to think about interior and
closure.

Definition 2.10. Let (X, τ) be a topological space and let A ⊆ X be
a subset. We call a point x ∈ A an interior point of A if there exists
U ∈ τ with x ∈ U ⊆ A.

Lemma 2.11. Let (X, τ) be a topological space and let A ⊆ X be a subset.
Then the interior of A is the set of all its interior points. In other words,

int(A) = {x ∈ A | ∃U ∈ τ such that x ∈ U ⊆ A}.

Here is a similar recasting of closure in terms of a property satisfied
by all its elements.

Definition 2.12. Let (X, τ) be a topological space and A ⊆ X a subset.
We say x ∈ X is adherent to A if every open set U ⊆ X with x ∈ X has
U ∩ A 6= ∅.

Lemma 2.13. Let (X, τ) be a topological space and let A ⊆ X be a subset.
Then the closure of A is the set

cl(A) = {x ∈ X | ∀U ∈ τ with x ∈ U, we have A ∩U 6= ∅}.

In other words, the closure of A is the set of points adherent to A.

Definition 2.14. Let (X, τ) be a topological space and A ⊆ X a subset.
The frontier of A is the set cl(A) \ int(A). The frontier of A is often called the

“boundary” of A, but frontier is a
better word because “boundary” is a
terminology clash with another popular
use of that word in topology.

Remark 2.15. The properties of the frontier of a set depend highly on
the set. For example, the frontier may be disjoint from A, contained
in A, or neither. The frontier is always a closed set, as can be seen by
restating

cl(A) \ int(A) = cl(A) ∩ int(A)c,

the intersection of two closed sets.

Exercise 2.5. The frontier of A is the set of points adherent to both A
and Ac.

There is some potentially confusing terminology to introduce now.

Definition 2.16. Let A ⊆ X be a subset of a topological space.
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• A limit point of A is a point x ∈ X such that every open set around
x contains a point of A other than itself.

• An isolated point of A is a point x ∈ A such that there exists an
open set U ⊆ X with U ∩ A = {x}. In other words, {x} ⊆ A is an
open set in the subspace topology on A. As in Remark 1.25, the confusion could

arise because an isolated point x ∈ A is
not a limit point of A, but it is always
the limit of a sequence in A (namely, the
constant sequence x, x, x, . . . ).

Exercise 2.6. Show that the set of limit points of A ⊆ X is closed. Show
that the closure of A ⊆ X is the union of the set of limit points of A
and isolated points of A.

Continuous functions

Similarly to how we based the definition of a topology on Theo-
rem 1.13, we will base the definition of a continuous function be-
tween topological spaces on Theorem 1.18.

Definition 2.17. Let (X, τ) and (Y, σ) be topological spaces. Then a
function f : X → Y is continuous if the preimage f−1(U) ⊆ X is open
in X, whenever U ⊆ Y is open in Y.

This definition makes the proof of the following a very easy exercise.

Theorem 2.18. Let (X, τ), (Y, σ), (Z, µ) be topological spaces, and
f : X → Y, g : Y → Z be continuous maps. Then the composite g ◦ f
is continuous.

Continuity can also be phrased in terms of closed sets.

Proposition 2.19. A function f : X → Y is continuous if and only if the
preimage of every closed set is closed.

Example 2.20. Here are some trivial examples of continuous functions.

(i) A map f : X → Y is called constant if it sends all of X to some
point y ∈ Y. Constant maps are continuous: for all U ⊆ Y the
preimage f−1(U) is either empty (if y 6∈ U) or the entire set X (if
y ∈ U). In either case the preimage is open.

(ii) Any function X → Y where X has the discrete topology is continu-
ous, because the preimage of any set in Y is open (as all subsets of
X are open).

(iii) Any function X → Y where Y has the indiscrete topology is
continuous, because f−1(∅) = ∅ and f−1(Y) = X are both open,
no matter what topology is on X.

Here is when we consider two topological spaces to be “the same”.

Definition 2.21. We call topological spaces (X, τ) and (Y, σ) home-
omorphic if there exists a bijection f : X → Y such that both f and
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f−1 are continuous. We write X ∼= Y to indicate that there exists a
homeomorphism.

Remark 2.22. A property of a space is topological if it is preserved under
homeomorphism. Homeomorphisms can do fairly brutal things to
a metric, meaning topological properties must be quite robust. For
example, you may recall from analysis the notion of compactness of a
subset of A ⊆ R (every sequence in A has a convergent subsequence,
whose limit is in A); it turns out compactness is a topological prop-
erty of a space, in the sense that all spaces homeomorphic to A will
also be compact. But, for example, length is not a topological property,
as the next example shows.

Example 2.23. There is a homeomorphism (−1, 1) ∼= R given by

f : (−1, 1)→ R; f (x) =
x

1− |x| .

This is easily checked to be a continuous bijection using methods
from Analysis. The inverse function is f−1(x) = x

1+|x| , which is also
continuous, verified similarly.

Example 2.24. Generalising the previous example, let B(x0; r) ⊆ Rn be
any open ball. Then there is a homeomorphism B(x; r) ∼= Rn, given
by translating the ball to the origin, projecting the point x onto the
unit sphere, then scaling the radius by a homeomorphism between
[0, 1) and [0, ∞):

x 7→ x− x0 7→
x− x0

||x− x0||
7→ x− x0

||x− x0||
· ||x− x0||

r− ||x− x0||
.

Thus we get

f : B(x; r)→ Rn; f (x) =
x− x0

r− ||x− x0||
.

The inverse function is f−1(x) = rx
1+||x|| + x0, which is also continuous.

It is very tempting to think “continuous bijection implies homeomor-
phism”. This is not true; it is possible to have a continuous bijective
map f : X → Y such that the inverse f−1 is not continuous. Here is a
straightforward example.

Example 2.25. Let X = {1, 2}. The discrete topology is τ =

{∅, {1}, {2}, {1, 2}} and the indiscrete topology σ = {∅, {1, 2}}.
Then the identity map IdX : (X, τ) → (X, σ) is continuous. But
the inverse of this map (i.e. the identity map) is not continuous
IdX : (X, σ)→ (X, τ). For example, the preimage of {1} is {1}, which
is not open in σ.



20 introduction to topology

Definition 2.26. A function (X, τ)→ (Y, σ) is called open if the image
of every open set is an open set. Similarly, f is called closed if the
image of every closed set is closed.

The following is essentially tautological, but you should go through
the motions of verifying it.

Proposition 2.27. A continuous bijective map is a homeomorphism if and
only if it is open.

Basis for a topology
The reader should compare the ideas
“basis of a topology” to “basis of a
vector space”. They are not quite
the same, but are united by the idea
of taking a subcollection of all the
objects and using them to generate
the full collection of objects. They
are also related by the fact that bases
are not required for the definition of
vector spaces nor for the definition
of topological spaces – they are an
artificial choice one makes in order to
make computation easier.

We saw in metric spaces that the concept of open balls was important
for actually writing down the topology. In Theorem 1.15, it was
shown that one could in fact define open sets in metric spaces to be
those sets expressible as a (possibly infinite) union of open balls. This
idea generalises to the concept of a basis for a topology.

Definition 2.28. Let (X, τ) be a topological space. A collection B ⊆ τ

is a basis for τ if every open set U ∈ τ is a union of elements of B.

Exercise 2.7. Let X and Y be topological spaces and let B be a basis for
the topology on Y. Prove that a function f : X → Y is continuous if
and only if f−1(U) is open for all U ∈ B.

Here is a theorem for recognising when a collection C of open sets is
a basis for the topology.

Theorem 2.29. Let X be a topological space and let C be a collection of open
sets in X. Suppose that for each open set U ⊆ X and each x ∈ U, there is an
element V ∈ C such that x ∈ V ⊆ U. Then C is a basis for the topology.

Example 2.30. In a metric space (X, d), we defined a set U ⊆ X to be
open if for every x ∈ U, there is an open ball x ∈ B(x; ε) ⊆ U. So the
induced topology on a metric space is essentially defined to be the
one that has the collection set of open balls as its basis.

The following is an application of the basis recognition theorem.

Proposition 2.31. If B is a basis for (X, τ), then a collection of subsets C is
a basis for (X, τ) if for all U ∈ B, and all x ∈ U, there exists V ∈ C with
x ∈ V ⊆ U.

If I have one basis and I think I might have a second one, I can use
Proposition 2.31 to prove it.

Example 2.32. Instead of using open balls as a basis for R3, we could
use Euclidean cubes, polar cubes, cylindrical cubes or spherical cubes
as the basis. By Proposition 2.31, to prove these are bases, the task is
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to show that at every point x ∈ R3, one of these objects fits inside an
arbitrarily small ball B(x; ε).

For example, consider spherical spherical co-ordinates (ρ, θ, ϕ). Let C

be the collection of subsets of R3 consisting of open cubes

{(ρ, θ, ϕ) ∈ (a, b)× (c, d)× (e, f )}.

At any point x ∈ R3, by taking the cube small enough, we can find
a cube containing x, and inside any given open ball B(x; ε). So by
Proposition 2.31, the open cubes form a basis.

Fineness and coarseness

The discrete and indiscrete topologies on a set X (Definition 2.4) in
some sense “opposite”. The discrete topology has the most number
of open sets a topology can have and the indiscrete topology has
the least. Let’s make this formal by introducing a way of comparing
“size” of a topology.

Definition 2.33. Let X be a set and let τ1 and τ2 be two topologies
on X. If τ1 ⊆ τ2 then we say τ1 is coarser (or smaller) than τ2. Equiva-
lently, we say τ2 is finer (or larger) than τ1.

Remark 2.34. Fix a set X. Given two topologies τ1 and τ2, the relation
“τ1 is finer than τ2” is a partial order on the set of topologies on X.

Next we prove some simple, but useful lemmas for constructing new
topologies with desired properties.

Lemma 2.35. Let X be a set and let A be a collection of subsets of X. Then
there exists a unique topology τA such that

(i) τA ⊇ A , and

(ii) if τ is a topology with τ ⊇ A , then τ ⊇ τA .

Definition 2.36. Let X be a set and let A be a collection of subsets of
X. We call the topology τA described in Lemma 2.35 the coarsest (or
smallest) topology containing A .

Lemma 2.37. Let X be a set. Let I be a non-empty indexing set and (Xα, τα)

be a topological space for all α ∈ I. Given functions fα : X → Xα, for
every α ∈ I, there is a coarsest topology on X such that the maps fα are all
continuous.





3 Subspaces, products and quotients

We now present several constructions for making new spaces
from old. In each case we give definitions in terms of “the coarsest
topology that makes [some function] continuous”. Such definitions
are good for proving abstract properties of a topology, but the reader
should also learn the subsequent equivalent formulations, which give
intuition about which sets are open, because these are much more
useful in practical computations.

Subspace topology

When we have a subset Y ⊆ X, there is an associated inclusion
function

ιY : Y → X; ιY(x) = x.

Using Lemma 2.37, we define a topology on Y.

Definition 3.1. Let (X, τ) be a topological space and Y ⊆ X be a
subset. The subspace topology τY for Y is the coarsest (or smallest) A subset Y ⊆ X with the subspace

topology is, of course, called a subspace.topology for Y such that the inclusion map Y → X is continuous.

Proposition 3.2. Let (X, τ) be a topological space and Y ⊆ X be a subset.
Then the subspace topology τY is the collection of sets Y ∩ U such that
U ∈ τ.

Exercise 3.1.

(i) Let (X, τ) be a topological space and Y ⊆ X be an open set in X,
show that the subspace topology τY is the collection of sets U ∈ τ

such that U ⊆ Y.

(ii) Let X = R and Y = [0, 1]. show that [0, 1
2 ) ∈ τY but [0, 1

2 ) /∈ τ.

Proposition 3.3. Let X and Y be topological spaces and let f : X → Y be
continuous.

(i) The restriction f |A : A→ Y is continuous.
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(ii) If B ⊆ Y is a subspace and im( f ) ⊆ B, then the map g : X → B obtained
from f by restricting the codomain is continuous.

(iii) Let Z be a topological space such that Y ⊆ Z is a subspace. Then the
function h : X → Z defined by h(x) = f (x) is continuous.

The following lemma is VERY helpful.

Lemma 3.4. If (X, τ) has a basis B then a basis for the subspace A ⊆ X is
given by

{U ∩ A |U ∈ B}.

Using this lemma, we get basis for some familiar spaces.

Example 3.5. A basis for Euclidean space is given by the collection B
of all open balls B(x; r). This leads to:

(i) The closed interval [0, 1] has a basis given by sets (a, b) ⊆ (0, 1),
[0, a) ⊆ [0, 1] and (a, 1] ⊆ [0, 1].

(ii) The circle S1 ⊆ R2 has a basis given by open arcs

A(a,b) = {(cos θ, sin θ) | θ ∈ (a, b)}

where (a, b) ⊂ R is any open interval.

Product topology for finite products

Given sets X and Y, the Cartesian product X×Y is the set of ordered
pairs

X×Y = {(x, y) | x ∈ X, y ∈ Y}.

Definition 3.6. Given topological spaces X and Y, an open box is a
subset U ×V ⊆ X×Y, where U ⊂ X and V ⊆ Y are open sets.

It makes intuitive sense that at least the open boxes should be open
in X × Y. We now define a topology X × Y, essentially designed to
make the set of open boxes a basis.

Definition 3.7. Given topological spaces (X, τ) and (Y, σ), the box
topology µbox is the collection of subsets Z ⊆ X×Y such that for every
(x, y) ∈ Z, there exists an open box U ×V such that

(x, y) ∈ U ×V ⊆ X×Y.

Proposition 3.8. Let (X, τ) and (Y, σ) be topological spaces. The box
topology µbox is indeed a topology on X × Y. Moreover, the collection of
open boxes

B = {U ×V |U ∈ τ and V ∈ σ}

is a basis for the box topology.
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Remark 3.9. As the open boxes are a basis for the box topology, a
subset W ⊆ X × Y is open in the box topology if and only if it is a
(possibly infinite) union of open boxes.

There is a second intuitively sensible way to topologise the product
X×Y of topological spaces. The product has two projection maps, back
to the respective factors:

pr1 : X×Y → X; pr1(x, y) = x,
pr2 : X×Y → Y; pr2(x, y) = y

The topology on X×Y should have the property that both of these are
continuous maps. Let us define a topology precisely to ensure this –
this is achieved using Lemma 2.37.

Definition 3.10. Given topological spaces (X, τ) and (Y, σ), the product
topology is the smallest topology on X × Y such that pr1 and pr2 are
both continuous.

It is handy that the box topology and the product topology agree on
a product X×Y, so either perspective can be used.

Proposition 3.11. Let (X, τ) and (Y, σ) be topological spaces. Then the box
and product topologies on X×Y are equal. The box topology is much easier to

visualise, so why are we not using it as
the definition of the product topology?
First, the boxes are only a basis for the
product topology, which is an ugly
way to define a topology. Secondly, the
natural generalisations of the box and
product topologies to infinite Cartesian
products do not agree. In such situations,
we should revert to the definition that
produces the nicest theorems. It turns
out in that the product topology is
much more nicely behaved for infinite
Cartesian products, which is why this
ends up being the “morally correct”
definition overall.

Once you know the definition of the topology on the product of two
sets, it generalises immediately to finitely many sets. Let (Xi, τi) for
i = 1, 2, . . . , n be a collection of topological spaces. The Cartesian
product is the set of ordered n-tuples

n

∏
i=1

Xi = X1 × · · · × Xn = {(x1, x2, . . . , xn) | xi ∈ Xi for i = 1, . . . , n}.

This has n projection maps, back to the respective factors

pri :
n

∏
i=1

Xi → Xi; pri(x1, x2, . . . , xn) = xi.

Using Lemma 2.37, we define a topology on ∏n
i=1 Xi.

Definition 3.12. The product topology ∏n
i=1 τi on ∏n

i=1 Xi is the coarsest
(or smallest) topology such the projection map pri is continuous for
every i = 1, . . . , n.

Exercise 3.2. Show that on X1 × X2 × X3, the product topology
τ1 × τ2 × τ3 agrees with the topology (τ1 × τ2)× τ3. In other words,
two iterations of Definition 3.10 agrees with Definition 3.12.
Now show by induction that n iterations of Definition 3.10 agrees
with Definition 3.12.
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Exercise 3.3. Show that the collection of open boxes

B = {U1 × · · · ×Un |Ui ∈ τi for i = 1, 2, . . . , n}

is a basis for a topology on ∏n
i=1 Xi and that the resulting topology

agrees with the product topology.

Product topology for infinite products*

The notion of pairs, triples, ... that are often used for finite Cartesian
products does not generalise well to the arbitrarily indexed products,
especially when the indexing set is uncountable. Here is a good way
to generalise the notion of product.

Definition 3.13. Let I be an index set and for each α ∈ I, let Xα be a
set. The Cartesian product over I is When I = {1, 2, . . . , n}, the ordered

n-tuple (x1, x2, . . . , xn) corresponds to
the function x(i) = xi .

∏
α∈I

Xα =

{
x : I →

⋃
α∈I

Xα

∣∣∣∣ x(α) ∈ Xα for all α ∈ I

}

Remark 3.14. The “ordered tuple” perspective on products only
works when we can list the elements of I in increasing order I =

{α1, α2, . . . }. So the ordered tuple perspective works if and only if I is
countable, and then an ordering must be specified in order to fix an
“ordered tuple” perspective on the product.

Exercise 3.4. By writing down a bijection, check that Definition 3.13

agrees with the familiar Cartesian product when I = {1, 2, . . . , n},
and with the usual ordering on I.

Exercise 3.5. Define an open box in the product ∏α∈I Xα to be a subset
∏α∈I Uα, where Uα ⊆ Xα is open for every α ∈ I. Show that the
collection B of all open boxes is a basis for a topology on ∏α∈I Xα.
Find an example that shows in general the box topology is finer than
the product topology.

Quotient topology

We recall the definitions and terminology associated with equivalence
relations on a set.

Definition 3.15. A relation ∼ on a set X is called an equivalence relation
if it has the following properties.

(i) reflexive: ∀x ∈ X, x ∼ x,

(ii) symmetric: ∀x, y ∈ X, x ∼ y =⇒ y ∼ x,

(iii) transitive: ∀x, y, z ∈ X, (x ∼ y and y ∼ z) =⇒ x ∼ z.
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Given an equivalence relation ∼ on X, we have:

• An equivalence class [x] = {y ∈ X | x ∼ y} ⊆ X, for every x ∈ X.

• The equivalence set X/∼ = { [x] | x ∈ X}. Recall, the equivalence set is a partition
of X.

• The quotient map q : X → X/∼; x 7→ [x].

Definition 3.16. Let (X, τ) be a topological space with an equivalence
relation ∼. Then the quotient topology is

σ = {U ⊆ X/∼ | q−1(U) ∈ τ}.

We call a quotient set equipped with the quotient topology a quotient
space.

Proposition 3.17. The quotient topology is indeed a topology. The quotient
topology is the finest (or largest) topology such that q : X → X/∼ is
continuous.

One way to try and understand a quotient space X/∼ is to recognise
it as homeomorphic to a known space Y, so we will spend some time
thinking about this task now.

Example 3.18. On R, consider the equivalence relation

x ∼ y ⇐⇒ x− y ∈ Z.

What is a likely looking homeomorphic space? Observe that there is
a disjoint union

R = · · · ∪ [−1, 0) ∪ [0, 1) ∪ [1, 2) ∪ . . .

and that for very x ∈ R there exists a unique x ∈ [0, 1) such that
x ∼ x. The map

f : R/∼ → [0, 1); [x] 7→ x

is then a bijection. However, the function f is not continuous, so this
likely looking approach does not work. To justify this to yourself,
consider that if it were continuous then, as the quotient map is
continuous, the composition f ◦ q would be continuous (this map
is x 7→ x). But the interval [0, 1

2 ) ⊆ [0, 1) is open in the subspace
topology, and

( f ◦ q)−1([0, 1
2 )) =

⋃
n∈Z

[n, n + 1
2 )

is not open in R. So f ◦ q is not continuous.

The problem in the previous approach was very specific to the closed
end of the interval [0, 1) not wrapping around to the open end. To fix
this, let’s “glue” the ends of the interval together to make a circle

S1 := {(cos(2πθ), sin(2πθ)) ∈ R2 | θ ∈ R},
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which is given the subspace topology from usual metric-induced
topology on R2. We wish to show that the function

R/∼ → S1; [x] 7→ (cos(2πx), sin(2πx))

is a homeomorphism. It will be helpful to introduce some more
terminology.

Definition 3.19. Let X be a set with an equivalence relation ∼. A
function f : X → Y determines a well-defined function

X/∼ → Y; [x] 7→ f (x)

if and only if f (a) = f (b) whenever a ∼ b. In this case we say the
function f descends to X/∼ and that the map [x] 7→ f (x) is induced
by f .

Exercise 3.6. If f : X → Y descends to the quotient space, there is an
induced map X/∼ → Y. Confirm that the following facts hold.

• The induced map is surjective if and only if f is surjective.

• The induced map is injective if and only if a ∼ b whenever f (a) =
f (b).

• The induced map is continuous if and only if f is continuous.

• If f is open then the induced map is open.

Example 3.20. The function

f : R→ S1; x 7→ (cos(2πx), sin(2πx))

descends to the quotient

R/∼ → S1; [x] 7→ (cos(2πx), sin(2πx))

because whenever a ∼ b, we have a = b + n for some n ∈ Z, so that

(cos(2πa), sin(2πa)) = (cos(2π(b + n)), sin(2π(b + n)))

= (cos(2πb), sin(2πb)).

Now observe that f is surjective, that f (a) = f (b) implies a ∼ b
and that f is continuous. Thus the induced map on the quotient is a
continuous bijection. It remains to show it is an open map. For this
it is sufficient to show that f itself is open. For this it is sufficient to
show that the image f (I) is open, for any open interval I = (a, b) ⊆
R. But the image of this is an open arc of S1. Recall the topology
on S1 consists of sets U ∩ S1 where U ⊆ R2 is open in the standard
topology. It is always possible to find an open ball in R2 intersecting
any given circle in a given arc. Even easier: take the open half-plane
through the endpoints of the open arc and with the arc contained in
the half-plane. We see open arcs are indeed open in S1 and hence the
induced map is open. Thus is it a homeomorphism.
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Example 3.21. Let ∼ be the equivalence relation on R2 so that (x, y) ∼
(u, v) if and only if x2 + y2 = u2 + v2. Note that the equivalence
classes consist of circles centred at the origin. As we can choose a
unique representative for each class on the positive x-axis (namely,
the place the circle intersects the x-axis), we guess the quotient space
R2/∼ is homeomorphic to the positive x-axis [0, ∞), with its usual
topology.

To show this is true, consider the map

f : R2 → [0, ∞); f (x, y) =
√

x2 + y2.

This descends to the quotient R2/∼ because if (x, y) ∼ (u, v) then√
x2 + y2 =

√
u2 + v2. The induced map is surjective, because f is

surjective, and the induced map is injective because f−1({ f (x, y)}) =
f−1({

√
x2 + y2}) = [(x, y)] for all (x, y) ∈ R2. As f is continuous,

so is the induced map on the quotient. It remains to show that the
induced map is open. In other words, we have to show that whenever
U ⊆ R2/∼ is open, the image in [0, ∞) is open. But U ⊆ R2/∼ is
open if and only if q−1(U) ⊆ R2 is open. Therefore it suffices to show
the stronger fact, that f itself is open.

To show f is open, it is sufficient to verify that the image of an open
ball in R2 is open in [0, ∞). Let B(x; ε) ⊆ R2 be an arbitrary open ball.
Then the reader may verify that

f (B(x; ε)) =

{
(||x|| − ε, ||x||+ ε) if 0 6∈ B(x; ε),

[ 0, ||x||+ ε) if 0 ∈ B(x; ε),

which in each case is an open set in [0, ∞). Thus R2/∼ ∼= [0, ∞) as
claimed.

A particularly important class of quotient spaces is given by “crush-
ing” a subspace A ⊆ X to a single point within X. One of the pur-
poses of the quotient space technology is to make this kind of vague
intuitive statement precise.

Definition 3.22 (Crushing a subspace). Let (X, τ) be a topological
space and let A ⊆ X be a non-empty subset. Let ∼ be the equivalence
relation on X given by This could also be phrased as say-

ing: use the equivalence relation
associated to the partition of X

{A} ∪ {{x} | x ∈ X \ A}.
x ∼ y ⇐⇒ (x = y) or (x, y ∈ A)

Write X/A for the subsequent quotient space.

Example 3.23. Let [0, 1] be the unit interval. We claim that

[0, 1]/{0, 1} ∼= S1.
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To see this, consider the q map f : [0, 1] → S1 given by f (x) =

(cos(2πx), sin(2πx)) descends to the quotient, because f (0) = f (1).
It is also surjective. It is injective except at x ∈ {0, 1}, but 0 ∼ 1, so
the induced map on the quotient is injective. Thus the induced map
on the quotient is bijective and continuous. To show the induced map
[0, 1]/{0, 1} → S1 is a homeomorphism we must show the induced
map on the quotient is open. Unlike Example 3.21, the map f itself is
not open, so we actually have to deal with the induced map.

Let U ⊆ [0, 1]/{0, 1} be open.

(i) If [0] 6∈ U then U consists of equivalence classes of the form
[x] = {x}. So we can write U = {{x} | x ∈ V} for some V ⊆ (0, 1).
Then q−1(U) = V, and V is an open set in [0, 1] (by definition of
the quotient topology, using that U is open). Then V is a union
of open intervals (a, b), so f (V) is a union of images of open
intervals. The image f ((a, b)) is the open arc of the circle from
angle a/2π to angle b/2π, which is an open set as previously
discussed. So f (V) ⊆ S1, which is the image of U under the
induced map, is also open.

(ii) If [0] ∈ U then q−1(U) = V, then V must contain both 0 and 1. We
must show f (q−1(U)) ⊆ S1 is open. For this we argue there is an
open arc around every point (x, y) ⊆ f (q−1(U)) ⊆ S1.

If (x, y) 6= (0, 1), then f−1{(x, y)} is a singleton in V \ {0, 1}. Thus
there is an open interval (a, b) ⊆ V \ {0, 1} ⊆ (0, 1) around this
point and (a, b) is mapped to an open arc in the circle, by the same
argument as in (i).

If (x, y) = (0, 1) then f−1{(x, y)} = {0, 1}. As V is open in [0, 1],
and contains both 0 and 1, there exists some ε > 0 such that
[0, ε) ∪ (1− ε, 1] ⊆ V. The image f ([0, ε) ∪ (1− ε, 1]) ⊆ S1 is the
open arc from angle −ε/2π to angle ε/2π, and so is open.

Thus f (q−1(U)) ⊆ S1 is open.

Thus the induced map on the quotient is open and [0, 1]/{0, 1} ∼= S1,
as claimed.

Exercise 3.7. Write S2 for the unit sphere in R3, and D2 for the unit
disc in R2. Using polar coordinates in R2, show that

f : D2 → S2; f (r, θ) = (sin(πr) cos θ, sin(πr) sin θ, cos(πr))

descends to the quotient D2/{r = 1} and that the induced map is a
homeomorphism. In other words show that the quotient of the unit
disc by its boundary circle is homeomorphic to the 2-sphere.

Example 3.24. The generalisation of the previous two examples is the
statement that the quotient of the n-disc by its boundary sphere Sn−1
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is homeomorphic to the n-sphere Dn/Sn−1 ∼= Sn. This is more easily
checked by less “hands-on” methods, as we shall see later.





4 Hausdorff spaces and limits

In metric spaces, the fact that d(x, y) = 0 implies x = y can be
thought of as a saying “metric topologies are strong enough to
separate points”. This is not something every topology can do; for
example the indiscrete topology τ = {∅, X} can only “see” the whole
set or nothing, and so does not know how to separate individual
points x, y ∈ X. If a topology can separate points, we are able to
recover many more of the familiar properties of a metric space.

Figure 4.1: Felix Hausdorff (1968 -
1942) is one of the founders of point-set
topology. He became fascinated by
Cantor’s set theory, using it to describe
the topological concepts we use today.
He also coined the term “metric space”.

Hausdorff spaces

Definition 4.1. A topological space (X, τ) is called Hausdorff if, for
every x, y ∈ X, with x 6= y, there exist disjoint open sets U and V
such that x ∈ U and y ∈ V.

Exercise 4.1. A topology induced by a metric is Hausdorff.

Exercise 4.2. Let (X, τ) be a topological space. Show that a set A ⊆ X
is open if and only if for every x ∈ A, there exists an open set U ⊆ A
with x ∈ U.

Theorem 4.2. Let (X, τ) be a topological space. If (X, τ) is Hausdorff then
{x} is closed for every x ∈ X.

The converse of this theorem is not true, as the next exercise shows.

Exercise 4.3 (Cofinite topology). Let X be a non-finite set. Define
a topology τ on X by declaring U ⊆ X to be open if E = ∅ or
X \ E is finite (you should check this is a topology). Show that every
singleton {x} is closed, but that (X, τ) is not Hausdorff.

Exercise 4.4. Let (X, τ) be a topological space. A subset S ⊆ X is called
discrete if the subspace topology on S is the discrete topology. Show
that in a Hausdorff space X, every finite subset is discrete.

Lemma 4.3. Let (X, τ) be a Hausdorff topological space and A ⊆ X. Then
A with the subspace topology is Hausdorff.

Lemma 4.4. Let (X, τ) and (Y, σ) be Hausdorff topological spaces. Then
X×Y with the product topology is Hausdorff.
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However, quotient spaces of Hausdorff spaces might not be Haus-
dorff! There are several classic examples of this.

Exercise 4.5 (The line with two origins). The real line R is a metric
space, so is Hausdorff. Write R1 = R× {1} and R2 = R× {2}. The
disjoint union X = R1 ∪R2 is a metric space, and so is Hausdorff.
Define an equivalence relation on X by (a, b) ∼ (c, d) if (a, b) = (c, d),
and also (x, 1) ∼ (x, 2) for all x 6= 0. The quotient space X/∼ is
called the line with two origins.
Show that the line with two origins is not Hausdorff, by showing that
every open set U ⊆ X/∼ around [(0, 1)] intersects every open set
V ⊆ X/∼ around [(0, 2)] nontrivially.

Exercise 4.6. On R, consider the equivalence relation x ∼ y ⇐⇒
x− y ∈ Q.

(i) Show that R/∼ is uncountable.

(ii) Show that the quotient topology is the indiscrete topology.
(In particular, NOT Hausdorff!)

Exercise 4.7. A topological space is Hausdorff iff the diagonal

∆ = {(x, x) | x ∈ X} ⊆ X× X

is a closed subset of X× X. Note that for any set X, the relation
xRy iff x = y results in X/R = X.
So Exercise 4.7 is the special case of
Exercise 4.8 where R = ∆.

Exercise 4.8. Suppose X is a Hausdorff space with an equivalence
relation R, and that the quotient map q : X → X/R is open.
Show that X/R is Hausdorff iff R ⊆ X× X is closed.

Neighbourhoods and limits

The idea of the limit of a sequence transferred very well from Analy-
sis to metric spaces (Definition 1.19). We will now attempt to transfer
this definition to the context of topological spaces. In general, the
idea has some issues, but for Hausdorff spaces it behaves as you
would hope.

Definition 4.5. Let x ∈ X be a point in a topological space. A set
A ⊆ X is called a neighbourhood of x if there is an open set U such
that x ∈ U ⊆ A.

Definition 4.6. Let (xn)∞
n=0 be a sequence in a topological space (X, τ).

Then we say x ∈ X is a limit of the sequence if for every neighbourhood
A of x there exists N ≥ 0 such that xn ∈ A for all n ≥ N.
We use the usual notation: “xn → x as n→ ∞” or “limn→∞ xn = x”.

The following example means we should be wary of limits in general
topological spaces.
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Example 4.7. Let X = {a, b}, where a 6= b and let τ be the indiscrete
topology. Let (xn) be any sequence in X. Then as the only neighbour-
hood of a is X and the only neighbourhood of b is X, it is easy to see
that xn → a and xn → b.

One of the pleasant features of a Hausdorff space is that this strange
scenario cannot arise.

Theorem 4.8. A convergent sequence in a Hausdorff space has a unique
limit.

Finally, limits of sequences give another way to think about the
closure of a subset, under certain conditions.

Proposition 4.9. Let (X, τ) be a topological space and A ⊆ X. Then if x is
a limit of a sequence in A then it belongs to the closure of A.

The converse is not necessarily true. That is, there exist topological
spaces with subsets A ⊆ X such that x ∈ cl(A) but there is no
sequence in A converging to x. To fix this, we have to put more
structure on the topological space.

Definition 4.10. Let (X, τ) be a topological space.

(i) X is first countable if for each x ∈ X, there exists a sequence of open
neighbourhoods U1, U2, U3, . . . of x such that for every neighbour-
hood N of x, we have Un ⊆ N, for some n ≥ 1.

(ii) X is second countable if it admits a basis with countably many
elements.

Exercise 4.9. Prove second countable implies first countable.

Exercise 4.10. Prove that every metric space is first countable.

Exercise 4.11. Prove that Euclidean space is second countable.

Exercise 4.12. Prove that if X is first countable and A ⊆ X, then for all
x ∈ cl(A), there exists a sequence (xn)∞

n=1 in A such that xn → x.

Corollary 4.11. Let (X, τ) be a first countable space, and A ⊆ X. Then
A is closed if and only if the limits of all convergent sequences in A are
elements of A.

Proof. Recall that A is closed if and only if A = cl(A). Now combine
Proposition 4.9 and Exercise 4.12.

There are many examples of spaces that are not first countable (and
thus not metrisable!). Here is a particularly cute one.

Example 4.12. Consider the crush space R/Z, crushing every integer
to a single point, but leaving the non-integer points alone. You can
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think of this as a flower with countably infinitely many petals. There
is no way to choose open neighbourhoods U1, U2, U3, . . . in the quo-
tient topology, around the class [0], such that every neighbourhood
of [0] is contained in one of the Un. Something like Cantor’s diagonal
argument is usually invoked to prove this!



5 Compactness

Compact spaces

In Analysis one defines a subset A ⊆ Rn to be compact if every se-
quence in A has a convergent subsequence. As we saw earlier, the
concept of limit does not transfer very well to general topological
spaces. But it turns out that the concept of compactness is fundamen-
tal in topology. To give a definition of compactness without using
sequences, we need the language of covers.

Definition 5.1. Given a set X, a cover of X is collection of sets

A = {Aα ⊆ X | α ∈ I}

such that
⋃

α∈I Aα = X. If X has a topology and Aα is open for all
α ∈ A, we call A an open cover.

Definition 5.2. A topological space (X, τ) is compact if every open
cover of X has a finite subcover.

In other words, X is compact if for any open cover {Uα | α ∈ I} of X,
there exists a finite subcollection {Uα(1), Uα(2), . . . , Uα(n)} such that⋃n

i=1 Uα(i) = X.

Definition 5.3. A subset Y ⊆ X of a topological space is compact if Y
with the subspace topology is a compact topological space.

These definitions combine with Lemma 3.2 to give the following.

Exercise 5.1. A subset Y ⊆ X of a topological space is compact if for
every collection of open sets {Uα ⊆ X | α ∈ I} such that Y ⊆ ⋃α∈I Uα,
there exists a finite subcollection {Uα(1), Uα(2), . . . , Uα(n)} such that
Y ⊆ ⋃n

i=1 Uα(i).

Exercise 5.2. Prove the following.

(i) If X is finite, every topology on X is compact.

(ii) The set X with the discrete topology is compact if and only if X is
finite.

(iii) The indiscrete topology is always compact.
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Theorem 5.4. If X is a compact space and E ⊆ X is closed then E is
compact.

Theorem 5.5. If X is Hausdorff then all compact sets are closed.

The famous characterisation of compact sets in Euclidean space by
Heine-Borel does not entirely become trivial with these new tools,
but does become a lot easier. We still have to prove the following
essentially “bare hands”, but then the rest is easy.

Theorem 5.6 (Heine-Borel). Let a, b ∈ R with a < b. Then the interval
[a, b] is compact, using the usual topology on R.

Corollary 5.7. Let R have its usual topology. Then a subset is compact if
and only if it is closed and bounded. “If E’s closed and bounded,

Says Heine–Borel,
And also Euclidean,
Then we can tell
That, if it we smother
With a large open cover,
There’s a finite refinement as well.”

– Conway

Bases, products and quotients

We consider how compactness interact with bases.

Theorem 5.8. Let (X, τ) be a topological space with basis B. Then X is
compact if and only if every open cover of X by sets in B admits a finite
subcover.

We consider how compactness interacts with products.

Theorem 5.9 (Tychonoff’s Theorem: finite products). If X and Y are
compact, then X×Y is compact.

We consider how compactness interacts with quotient spaces.

Theorem 5.10. Let (X, τ) be a topological space and ∼ be an equivalence
relation on X. Then if X is compact, so is the quotient space X/ ∼.

This is perhaps the most important theorem concerning compact sets.

Theorem 5.11. The image of a compact set under a continuous map is
compact.

There are many consequences of this excellent theorem.

Theorem 5.12. Let R have the usual topology, suppose K ⊆ R is closed
and bounded and let f : K → R be continuous. Then f (K) is closed and
bounded. Moreover, f attains its bounds.

Theorem 5.13. A continuous bijective function f : X → Y from a compact
space to a Hausdorff space is a homeomorphism.

Example 5.14. There is no homeomorphism between a circle and the
real line.
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Theorem 5.15. Let (X, τ) be a compact topological space and ∼ be an
equivalence relation on X. Suppose f : X → Y is a continuous function to
a Hausdorff space Y, that descends to a bijective function X/∼ → Y. Then
the induced function is a homeomorphism X/∼ ∼= Y

Exercise 5.3. Let n ≥ 1. Consider the continuous function

f : Dn → Rn+1 = Rn ×R

x 7→
{ (

sin(π||x||) · x
||x|| , cos(π||x||)

)
if x 6= 0

(0, 1) if x = 0

(i) Prove f has image Sn (and is therefore a continuous surjective map
f : Dn → Sn).

(ii) Prove f descends to the quotient Dn/Sn−1.

(iii) Prove the induced map on the quotient is injective.

(iv) Prove that Dn/Sn−1 ∼= Sn.

Sequential compactness

We have already seen that the notion of limit of a sequence only
really becomes useful when we are working in a Hausdorff space, so
that limits are unique (Theorem 4.8). This means we should be fairly
suspicious of the following compactness definition from Analysis.

Definition 5.16. A topological space (X, τ) is sequentially compact if
every sequence (xn)∞

n=0 in X has a convergent subsequence.

Adding the adjective “Hausdorff” at least makes limits unique,
but it is not strong enough to ensure this definition agrees with
the definition of compactness. In metric spaces, it turns out the
definitions do agree.

Theorem 5.17. Let (X, d) be a metric space. Then X with the induced
topology is compact if and only if it is sequentially compact. In general, there are spaces that are

compact but not sequentially com-
pact, and there are spaces that are
sequentially compact but not compact!
Theorem 5.17 shows that adding the
adjective “metrisable” to the topology is
enough to make these notions agree.

One-point compactification

Compact spaces have a lot of technical advantages over non-compact
spaces. In this section we discuss a technical procedure for artificially
"compactifying" a space.

Construction 5.18 (One-point compactification). Let (X, τ) be a topo-
logical space. Define the one-point compactification (X∗, τ∗) as follows.
Let

X∗ = X ∪ {∞}.
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Here “∞” is a stand-in symbol for “an object not in the set X al-
ready”. We then define

τ∗ = τ ∪ {Kc ∪ {∞} |K ⊆ X closed and compact}.

In other words, there are two types of open sets in X∗, the ones
that were already the open sets in X, and the new ones that are the
complements of closed compact sets, together with the infinity point.

Of course, we must check we have achieved the goal of compactify-
ing!

Theorem 5.19. Given a topological space (X, τ):

(i) τ∗ is a topology on X∗;

(ii) τ∗ is a compact topology;

(iii) the subspace topology on X ⊆ X∗, coming from τ∗ is τ.

Example 5.20. If (X, τ) ∼= (Y, σ) then (X∗, tau∗) ∼= (Y∗, σ∗).

For some applications, it would be useful to conclude that (X∗, τ∗) is
the unique one-point compactification of (X, τ). For this we need to
make some more assumptions about (X, τ).

Definition 5.21. A space X is locally compact if every point x ∈ X has
an open neighbourhood U such that cl(U) is compact.

Example 5.22. (i) Of course, compact spaces are locally compact!

(ii) Euclidean space Rn is the main example of a locally compact
space. Each point x ∈ Rn has an open ball around it, for example
B(x; 1). The closure of the ball is compact by the Heine-Borel
theorem.

(iii) In fact it is only important that the space X is locally Euclidean.
That is, for every point x ∈ X, there is an open neighbourhood V
of x such that there is a homeomorphism f : V → Rn for some n.
Then the set f−1(B( f (x); 1)) ⊆ X is the required neighbourhood
with compact closure.

An example of a locally Euclidean space (that is not Rn) is the
n-sphere Sn.

Theorem 5.23. If (X, τ) is a locally compact Hausdorff space, then τ∗ is the
unique Hausdorff topology on X∗ satisfying the properties (i), (ii), and (iii)
of Theorem 5.19.

If we remove a point from a compact
space, and then point-compactify, we
would like to get back to the space
we started with. Corollary 5.24 gives
conditions where this holds.

Corollary 5.24. Let (Y, σ) be a compact Hausdorff space. Let y ∈ Y and
write X = Y \ {y}, and τ the subspace topology on X. If (X, τ) is locally
compact, then (X∗, τ∗) ∼= (Y, σ).
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Example 5.25. The n-sphere Sn is compact and Hausdorff. The space
Sn \ {y}, where y = (0, . . . , 0,−1) is the South pole, is locally-compact
and Hausdorff. Thus (Sn \ {y})∗ ∼= Sn. Using the function from
Exercise 5.3, one can prove that the open unit ball B(0; 1) ⊆ Rn is
homeomorphic to Sn \ {y}. By Example 5.20, we thus have that

B(0; 1)∗ ∼= (Sn \ {y})∗.

Putting this all together, the one-point compactification of the open
n-disc is the n-sphere!





6 Connectedness

Suppose that U is an open subset of R (in the usual topology) and
f : U → R is a differentiable function with f ′(u) = 0 for all u ∈ U.
Surely, we can conclude that f is constant? No! We are not being
careful enough.
For example, we can set U = (0, 1) ∪ (2, 3), and define

f (u) =

{
0 if 0 < u < 1,
1 if 2 < u < 3.

This satisfies all the conditions, but is not constant.
What extra condition should we put on U to make the result true?

Connected spaces

Definition 6.1. A topological space (Y, σ) is said to be disconnected if
we can find non-empty open sets U and V such that U ∪V = Y and
U ∩V = ∅. A space which is not disconnected is called connected.

Definition 6.2. If E is a subset of a topological space (X, τ) then E is
called connected (respectively disconnected) if the subspace topology on
E is connected (respectively disconnected).

The definition of a subspace topology gives the following alternative
characterisation which the reader may prefer.

Lemma 6.3. If E is a subset of a topological space (X, τ), then E is discon-
nected if and only if we can find open sets U and V such that U ∪ V ⊇ E,
U ∩V ∩ E = ∅, U ∩ E 6= ∅ and V ∩ E 6= ∅

Here is another alternative characterisation which shows that we are
on the right track.

Theorem 6.4. If E is a subset of a topological space (X, τ), then E is
disconnected if and only if we can find a non-constant continuous function
f : E→ {0, 1}, where {0, 1} is given the discrete topology.

Here is another (even easier) observation that is pretty useful in
practice.
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Lemma 6.5. A space X is disconnected if and only if it contains a proper
subset A ⊆ X that is both closed and open.

Exercise 6.1. Show that the following sets A are disconnected:

(i) A = {0, 1} ⊆ R

(ii) A = [−1, 0) ∪ (0, 1] ⊆ R

(iii) A = Q ⊆ R

(iv) A = A1 ∪ A2 ⊆ R2 where A1 = R× {0} and A2 = {(x, y) | xy = 1}.
In other words, if a set is connected
it is still connected after you add any
number of its limit points.

Proposition 6.6. If A ⊆ X is connected and A ⊆ B ⊆ cl(A), then B is
connected. In particular, the closure of a connected set is connected.

The following deep result is now easy to prove (if we are willing to
use the Intermediate Value Theorem in our proof).

Theorem 6.7. If we give R the usual topology, then R and the inter-
vals [a, b] and (a, b) are connected.

Exercise 6.2.

(i) If (X, τ) and (Y, σ) are topological spaces, E is a connected subset
of X and g : E→ Y is continuous, then g(E) is connected. “The continuous image of a connected

set is connected.”
(ii) If (X, τ) is a connected topological space and ∼ is an equivalence

relation on X, then X/∼ with the quotient topology is connected.

(iii) If (X, τ) and (Y, σ) are connected topological spaces, then X × Y
with the product topology is connected.

(iv) If (X, τ) is a connected topological space and E is a subset of X, it
does not follow that E with the subspace topology is connected.

The proof of the next example is particularly important because it
gives a standard technique for using connectedness in practice.

Example 6.8. Suppose that E is a connected subset of a topological
space (X, τ). Suppose that f : E → R is “locally constant” in the
sense that, given any e ∈ E, we can find an open neighbourhood U of
e such that f is constant on U ∩ E. Then f is constant.

The connected components
“The union of a collection of connected
subsets that have a point in common is
connected.”

Lemma 6.9. Let {Aα | α ∈ I} be a collection of connected subsets of a
topological space, and suppose there exists x ∈ X such that x ∈ Aα for all
α ∈ I. Then the union

⋃
α∈I Aα is connected.

The previous lemma ensures the following definition results in a
connected set.
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Definition 6.10. Let (X, τ) be a topological space and let x ∈ X.
Then the connected component of x is the union over all connected sets
containing x.

Exercise 6.3. Let (X, τ) be a topological space and for x, y ∈ X, write
x ∼ y if there exists a connected set E ⊆ X such that x, y ∈ E. Prove
that ∼ is an equivalence relation on X and that [x] is the connected
component of x.

Exercise 6.4.

(i) Prove that a homeomorphism f : A → B induces a bijection
between the sets of connected components. In particular, this
shows the cardinality of the set of connected components is a
topological invariant.

(ii) Prove that if f : X → Y is a homeomorphism then for any point
x ∈ X the restriction to the subspaces f : X \ {x} → Y \ { f (x)} is a
homeomorphism.

(iii) Use the previous two results to classify the following capital letters
of the alphabet up to homeomorphism: The letters are 1-dimensional closed

subsets of R2. Also, use this font!

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Connectivity in the reals

In some sense, proving that [a, b] in connected by using the Interme-
diate Value Theorem is cheating and not in the spirit of point-set
topology because most proofs of the IVT from Analysis essentially
invoke the connectedness of the interval. Let’s prove it again, without
this crutch.

Theorem 6.11. If we give R the usual topology, then R and the inter-
vals [a, b] and (a, b) are connected.

Proof. Consider [a, b] and suppose for a contradiction that there exists
a proper subset A ⊆ [a, b] that is both open and closed. By replacing
A by its complement (which is also proper, open and closed), if
necessary, we can assume b 6∈ A. As A is a closed subset of a compact
space, it is compact and thus has a maximal element t ∈ A. As A is
open there exists B(t; δ) ⊆ A. As t < b, there exists some s ∈ B(t; δ)

with t < s < b. But then s ∈ A and t < s. Contradiction.

The version for (a, b) then follows by observing that (a, b) is the
union of closed intervals around (b− a)/2, the centre point1. Now 1 E.g. (−1, 1) =

⋃
n∈N[−1 + 1

n , 1− 1
n ].

apply Lemma 6.9.

Using this, we can get a souped up IVT.
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Theorem 6.12 (Intermediate Value Theorem). Let f : X → R be a
continuous map from a connected space X, and let a, b ∈ X. Then for
all y ∈ R with f (a) < y < f (b), there exists c ∈ X with f (c) = y.

Proof. Consider

U = f (X) ∩ (−∞, y) and V = f (X) ∩ (y, ∞).

As X is connected and f is continuous, f (X) is connected. As f (a) ∈
U and f (b) ∈ V, these are non-empty open subsets of the connected
set f (X). This implies they do not cover f (X). Hence y ∈ f (X) and
the result follows.

Exercise 6.5. Prove that if f : S1 → R is a continuous function then
there exists x ∈ S1 such that f (x) = f (−x). Exercise 6.5 works in greater generality.

Suppose X is a topological space with
an involution; that is a continuous
function I : X → X such that I ◦ I = IdX
(e.g. a reflection). Then there exists
x ∈ X such that f (x) = f (I(x)).

Exercise 6.6. Suppose f : [0, 1] → [0, 1] is a continuous function. Then
there exists x ∈ [0, 1] such that f (x) = x.

Path connectivity, local connectivity, and path components

Connectedness is related to the following, older, concept.

Definition 6.13. A path in a topological space (X, τ) is a continuous
function

γ : [0, 1]→ X.

Writing γ(0) = a and γ(1) = b, we say the path is from a to b.
We say (X, τ) is path-connected if, for all a, b ∈ X there exists a path in
X from a to b.

Exercise 6.7. Show that the following sets are path connected by
writing down paths between any two arbitrary points.

(i) Rn

(ii) B(x; r) ⊆ Rn for all x ∈ Rn and all r > 0.

(iii) Rn \ {0} “punctured Euclidean space”

(iv) Sn for n > 0.2 2 Hint: it is easy to prove that the continu-
ous image of a path-connected space is path
connected (prove this). Express Sn as such a
continuous image.

Construction 6.14. Suppose we have two paths

γ : [0, 1]→ X and δ : [0, 1]→ X

such that γ(1) = δ(0). Then we can concatenate the paths as follows,
to define a new path from γ(0) to δ(1).

γ • δ : [0, 1]→ X; t 7→
{

γ(2t) if 0 ≤ t ≤ 1
2

δ(2t− 1)) if 1
2 ≤ t ≤ 1
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Concatenated paths are still paths (i.e. are continuous functions), due
to the following lemma.

Lemma 6.15. Suppose X =
⋃n

i=1 Ei is a finite union of closed subsets
Ei ⊆ X. If a function f : X → Y such that for all i = 1, . . . , n, the
restriction f |Ei : Ei → Y is continuous, then f is continuous,

The operation of concatenation should help you prove transitivity in
the following.

Exercise 6.8. Let (X, τ) be a topological space and for x, y ∈ X write
x ∼ y when there is a path in X from x to y. Show that ∼ is an
equivalence relation.

Definition 6.16. Let (X, τ) be a topological space. The equivalence
classes under the equivalence relation “there is a path from x to y”
are called the path-components of X.

Write π0(X) for the set of path components of X.

The following is fairly easy to prove.

Theorem 6.17. Let (X, τ) be a topological space. If X is path-connected then
X is connected.

The converse is generally false. You might know this example from
an earlier Analysis class. It is frequently used as a counterexample to
spurious statements.

Exercise 6.9 (The topologist’s sine curve). Write

E = {(x, sin(1/x)) ∈ R2 | 0 < x < 1)}

for the graph of the topologist’s sine curve, and write

F = {(0, y) ∈ R2 | − 1 ≤ y ≤ 1}.

Show that the union E ∪ F ⊆ R2 is connected, but not path connected.

The converse is true when we add in an extra condition.

Definition 6.18. A space X is locally path connected if every x ∈ X has
an open path connected neighbourhood.

Theorem 6.19. If X is connected and locally path connected then X is path
connected.

Proof. Let x ∈ X. Suppose X is connected and locally path connected
but not connected. We will show there exists a proper subset that is
both open and closed (a contradiction to being connected). Let

E = {y ∈ X | there is a path from x to y}.
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As x ∈ E, this set is non-empty. As X is not path connected, this set is
proper.

We show E is open. Let y ∈ E. As X is locally path connected, y has
an open path-connected neighbourhood N. For all z ∈ N, there is a
path from y to z. Concatenating this with a path from x to y, there is
a path from x to z. So N ⊆ E and hence E is open.

We show Ec is open. If y ∈ Ec then there is an open, path connected
neighbourhood N of y. If there is some element z ∈ N ∩ E, we could
concatenate a path from x to z with a path from z to y to get a path
from x to y, which does not exist. Hence N ⊆ Ec and so Ec is open.

We have shown E is both open and closed, which is a contradiction as
X is connected. Thus X is path connected.

Example 6.20. Any open, connected subset U of Rn is path connected.
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Convention: from now on we will use
the word map to mean “continuous
function”. This is to prevent having
to write the word “continuous” all the
time. This is a very common (but not
universal) convention in Topology.

Convention: from now on, X and Y
will always denote topological spaces
and the topology will be suppressed
from the notation.

We now switch from point-set topology into Algebraic Topology.

The overarching idea of Algebraic Topology is to study topological
spaces by extracting cruder, simpler quantities from them: we seek
to assign discrete, algebraic objects to topological spaces. These
provide a way of distinguishing and, hopefully, characterising the
space. These algebraic objects should be invariant under continuously
“deforming” the topology. The precise meaning of “deformation” in
this context is given by the concept of homotopy, the theme of this
section.

We begin by discussing paths in our space, up to deformation.

Homotopy of paths
Notation: I = [0, 1] and ∂I = {0, 1} is
now a standing notation.Write I = [0, 1] and ∂I = {0, 1}. A path from a to b in X is a map

γ : I → X

with γ(0) = a and γ(1) = b. We now describe what it means to
“deform” such a path continuously into another path.

Definition 7.1. Let a, b ∈ X and suppose γ, δ : I → X are paths from a
to b. A homotopy from γ to δ relative to ∂I is a map

F : I × [0, 1]→ X

such that:

• F(s, 0) = γ(s) and F(s, 1) = δ(s) for all s ∈ I;

• F(0, t) = a and F(1, t) = b for all t ∈ [0, 1].

If there exists such an F, we write γ ' δ rel. ∂I.

Remark 7.2. You should think of a homotopy from γ to δ as 1-
parameter family of paths, where each path in the family starts at
a and ends at b. It is helpful to think of the t co-ordinate as “time”.
Then at each time F(−, t) : I → Y is a path. At time 0 we have γ and
at time 1 we have δ. This captures the idea of deforming γ to δ, while
“pinning” down the ends to a and b at all time.
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Definition 7.3. A subset X ⊆ Rn is convex if for all x, y ∈ X we have
tx + (1− t)y ∈ X for all t ∈ [0, 1].

Example 7.4. Any two paths in a convex subset X ⊆ Rn are homo-
topic rel. ∂I. To see this, let γ, δ : I → X be paths in X from a to b in
X. Then each point γ(s) can by joined to the corresponding point δ(s)
be a straight line. We then deform γ to δ pushing along these lines all
at once:

F : I × [0, 1]→ X; F(s, t) = (1− t)γ(s) + tδ(s).

The function F is continuous by Exercise 7.1, below.

Exercise 7.1. If f : X → Rn, g : Y → Rn and h : Z → R are continuous
functions, then the following functions are continuous:

• X×Y → Rn; (x, y) 7→ f (x) + g(y)

• X× Z → Rn; (x, y) 7→ f (x)h(z)

Definition 7.5. Let γ : I → X be a path from a to b in X. Then the
inverse path is the path from b to a in X given by

γ−1 : I → X; γ−1(t) = γ(1− t).

Proposition 7.6. Let a, b ∈ X. The relation γ ' δ rel. ∂I is an equivalence
relation on the set of paths from a to b.

General paths are important, but we will mainly be interested in
paths that start and end at the same point.

Definition 7.7. We call a path γ : I → X a loop if γ(0) = γ(1). We say
the loop is based at γ(0).

Definition 7.8. Fix x0 ∈ X. Define π1(X, x0) to be the set of equiv-
alence classes of loops in X under the relation that the loops are
homotopic rel. boundary.

In fact this set of equivalence classes forms a group, as we show in
the next section.

The fundamental group

We will now show that π1(X, x0) is a group. Groups need an identity
element, so we define this now.

Definition 7.9. Given x ∈ X, define the constant path to be cx : I → X
given by cx(t) = x for all t ∈ I.

Proposition 7.10. Write [γ] for the equivalence class of a path γ under the
relation of homotopy rel. boundary.
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(i) Show that the operation [γ] • [δ] := [γ • δ] is well-defined.

(ii) Show that this operation is associative and unital.

(iii) Show that [γ • γ−1] = [cγ(0)].

This exercise proves the following.

Theorem 7.11. Let x0 ∈ X. Then π1(X, x0) is a group under the operation
of path concatenation, with identity element [cx0 ] and inverses [γ]−1 =

[γ−1]. This is called the fundamental group of X.

Dependence on the basepoint

The reader will have spotted the extra choice that had to be made in
order to define the fundamental group, namely the basepoint x0 ∈ X.
If two choices of basepoint are connected by a path, the resulting
fundamental groups are related as follows.

Theorem 7.12. Let x0, y0 ∈ X and suppose α is a path from x0 to y0. Then
the map

Cα : π1(X, x0)→ π1(X, y0); Cα([γ]) = [α−1 • γ • α]

is an isomorphism, with inverse Cα−1 .

Thus if X is a path-connected space, the isomorphism class of the
fundamental group, but not necessarily the group itself, is well-
defined.1 1 It is very common for people to gloss

over this point and simply write π1(X)
when X is a path-connected space,
indicating the reader is free to choose
their own basepoint because the author
only cares about the isomorphism class
of the group.

Remark 7.13. If α and β are two paths from x0 to y0, then there is a
self-isomorphism

Cβ−1 ◦ Cα : π1(X, x0)→ π1(X, x0); [γ] 7→ [(α • β−1)−1 • γ • (α • β−1)]

This shows the fundamental group of a path-connected space is well-
defined, not just up to arbitrary isomorphism, but more specifically
up to conjugation. In particular, if the fundamental group is abelian
then conjugation is the identity map and the fundamental group is
well-defined independent of basepoint.

Definition 7.14. A space X is simply connected if it is path connected
and has trivial fundamental group.2 In other words, X is simply 2 Though fundamental groups generally

depend on the basepoint, the property
of having trivial fundamental group is
well-defined in a path connected space.

connected if π0(X) and π1(X) are both singletons.

Homotopy

The fundamental group of a space is a fairly robust invariant. Not
only is it preserved under homeomorphisms of the space, it is pre-
served under the much more violent idea of “deforming” the entire
space. We now make precise what it means to deform a general map
and to deform a space itself.
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Definition 7.15. Let f , g : X → Y be maps. A homotopy from f to g is a
map

H : X× [0, 1]→ Y

such that H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X. You should think of a homotopy from f
to g as 1-parameter family of functions
H(−, t) : X → Y, starting at f when
t = 0 and ending at g when t = 1. This
captures the idea of deforming f to g.

We write f ' g, and say f is homotopic to g if there exists a homotopy
from f to g. To specify a homotopy, we can write H : f ' g.

Example 7.16 (Linear interpolation). Let f , g : X → Rn be continuous
maps. Then the map

H : X× [0, 1]→ Rn; H(x, t) = (1− t) f (x) + tg(x)

is a linear combination of continuous functions, thus continuous
overall, by Exercise 7.1. Thus it is a homotopy from f to g. More
generally, this proof would work whenever f , g : X → Y, where
Y ⊆ Rn is convex.

Suppose f , g, h : X → Y are maps, that H : f ' g and J : g ' h. Then
we can concatenate the homotopies as follows, to define a homotopy
H • J : f ' h. Our convention in these notes is that

concatenation reads left-to-right. There
is no agreed upon convention for this,
and other texts use right-to-left.H • J : X× [0, 1]→ Y; (x, t) 7→

{
H(x, 2t) if 0 ≤ t ≤ 1

2
J(x, 2t− 1)) if 1

2 ≤ t ≤ 1

This operation should help you prove transitivity in the following.

Exercise 7.2. Prove that the relation “ f is homotopic to g” is an equiva-
lence relation on the set of maps from X to Y.

The notion of homotopic maps is used to describe the idea of homo-
topy equivalent spaces.

If we had instead insisted the stronger
condition that g ◦ f = IdX and
f ◦ g = IdY , then g would be a con-
tinuous inverse and hence f would
be a homeomorphism. This shows
that homeomorphic spaces are also
homotopy equivalent. The converse
is emphatically not true – homotopy
equivalence is a much cruder equiva-
lence relation than homeomorphism.

Definition 7.17. A map f : X → Y is a homotopy equivalence of topo-
logical spaces if f admits a homotopy inverse g : Y → X; that is, a map
such that g ◦ f ' IdX and f ◦ g ' IdY.
We write X ' Y, and say X and Y are homotopy equivalent if there
exists a homotopy equivalence. This is clearly an equivalence relation
on the set of topological spaces.

Definition 7.18. A space that is homotopy equivalent to a singleton
(with the unique topology), is called contractible.

The following proposition provides good intuition for contractibility.
Intuitively: the map that fixes every
point in X can be deformed into the
map that sends all points to some x0.
You can think of the deformation itself
as the contraction.

Proposition 7.19. A space X is contractible if and only if the identity map
IdX is homotopic to a constant map c : X → X; c(x) = x0 for some x0 ∈ X
and all x ∈ X.

Example 7.20 (Euclidean space is contractible). Consider the homo-
topy F : Rn × [0, 1] → Rn given by F(x, t) = tx. For t = 0, this is
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the constant map c : X → X, sending all points to 0 ∈ X. For t = 1
this is the identity map IdX. By Proposition 7.19, the space Rn is
contractible. Note that for all t > 0, F(−, t) : X → X

is a surjective map then suddenly, at
t = 0, it is not! This might seem
counterintuitive, but illustrates how
violent homotopies can be.

Example 7.21 (Punctured Euclidean space is a homotopy sphere).
Write

Sn = {x ∈ Rn+1 | ||x|| = 1}.

Write f : Sn ↪→ Rn \ {0} for the inclusion map and write

g : Rn+1 \ {0} → Sn; f (x) =
x
||x|| .

The maps f and g are homotopy inverses of each other. One direction
is easy, as g ◦ f = IdSn without even using a homotopy. To see that
f ◦ g ' IdRn+1\{0} we use the “linear interpolation” homotopy. Namely

F : (Rn+1 \ {0})× [0, 1]→ Rn+1 \ {0}; F(x, t) = tx + (1− t)
x
||x|| .

We now wish to define our first algebraic object associated to a
topological space, that is invariant under homotopy equivalence of
topological spaces. Namely, the number of connected components.

Exercise 7.3. Show that if X ' Y, then the respective sets of path
components π0(X) and π0(Y) have the same cardinality.

Finally, when we introduced homotopy of paths we insisted that
the endpoints of our paths were “pinned down” in X throughout
the deformation. This notion is more generally provided by the
following.

Definition 7.22. Let A ⊆ X be a subset and suppose

F : X× [0, 1]→ Y

is a homotopy such that F|A×[0,1](x, t) is independent of t. Then we
say F is a homotopy relative to A (or rel. A).

Exercise 7.4. Given a map f : A → Y, consider the set of maps
X → Y that restrict to f on A. Show that “homotopic rel. A” is an
equivalence relation on this set.

Homotopy invariance of π1(X, x0)

We now make precise the sense in which the fundamental group of
homotopy equivalent spaces are “the same”.

Proposition 7.23. Given a map p : X → Y, the function

p∗ : π1(X, x0)→ π1(Y, p(x0)); [γ] 7→ [p ◦ γ]

is a well-defined group homomorphism. Furthermore, given a map q : Y →
Z, we have (q ◦ p)∗ = q∗ ◦ p∗.
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We would like homotopy equivalent maps p, q : X → Y to induce the
same fundamental group homomorphism. This doesn’t quite make
sense as stated, because homotopies do not need to fix the image of
x0 in Y, so the basepoint might be changing throughout. However,
the following is true.

Proposition 7.24. Let p, q : X → Y be maps and let x ∈ X. Suppose
H : p ' q. Then the following is a commutative diagram of group homor-
morphisms

π1(X, x)

π1(Y, p(x)) π1(Y, q(x)),

q∗p∗

Cα

∼=

where α(s) = H(x, s) is the path from p(x) to q(x).

In particular:

Corollary 7.25. Let p, q : X → Y be maps and let x ∈ X. Suppose
H : p ' q rel. {x}. Then the group homomorphisms

p∗, q∗ : π1(X, x)→ π1(Y, p(x))

are equal.

A further corollary shows we have achieved our goal of showing
that the fundamental group (or at least its isomorphism class) is a
well-defined homotopy invariant of the space X.

Corollary 7.26. If X and Y are homotopy equivalent, path-connected spaces,
then π1(X, x0) ∼= π1(Y, y0) for all x0 ∈ X and y0 ∈ Y.

Categorical language – for enthusiasts*

This is not a course in category theory, but some of the statements
above can be phrased nicely in that language.

Definition 7.27. A category C consists of a “collection”3 of objects and, 3 Technically a class, in the sense of ZFC
set theory. In many practical settings,
Ob(C) is just an ordinary set, and in
this case the category is called small.

for each pair of objects A, B, a set Hom(A, B) of morphisms f : A → B
from A to B. There should be an identity morphism IdA ∈ Hom(A, A)

for every object A, and a composition law

◦ : Hom(B, C)×Hom(A, B)→ Hom(A, C)

for each triple. Composition must be associative and the identity
maps should function as you expect.
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Definition 7.28. A functor F : C → D is a “map” of categories, in the
following sense. The functor assigns to each object A of C an object
F(A) of D. The functor assigns to each morphism f : A → B in D a
morphism F( f ) : F(A)→ F(B) in D, such that

F(IdA) = IdF(A) and F(g ◦ f ) = F(g) ◦ F( f ).

Example 7.29. Write T for the category with objects topological
spaces and morphisms continuous functions. Sadly, T is not a small category. To

see this consider that there are at least
as many topological spaces as there
are sets, because every set admits the
discrete topology. As there is no set of
all sets, the object collection of T is not
a set.

Write T∗ for the category with objects based topological spaces
(X, x0) and morphisms basepoint-preserving continuous functions.

Write G for the category whose objects are groups and whose mor-
phisms are group homomorphisms.

With these categories in mind, we see that π1 is a functor

π1 : T∗ → G

where the pointed space (X, x0) is assigned the group π1(X, x0) and
map of pointed spaces p : (X, x0)→ (Y, y0) is assigned

π1(p) := p∗ : π1(X, x0)→ π1(Y, y0).

In fact, more is true. The results concerning the homotopy invariance
of π1 can be phrased this way as well.

Example 7.30. Write hoT for the homotopy category of T . This is the
category with the same objects as T , but with the morphisms the
homotopy classes of continuous maps. Note, the homotopy version of a cate-

gory has potentially fewer morphisms
than the original, and that homotopy
equivalences in the original category
become isomorphisms in the homotopy
category.

Similarly, write hoT∗ for the homotopy category of T∗. This is the
category with the same objects as T∗, but with the morphisms the
homotopy classes of basepoint-preserving continuous maps.

The homotopy invariance of π1 shows that the functor π1 : T∗ →
G factors through the homotopy category, in the sense that it is a
composition of functors

T∗ → hoT∗
π1−→ G ,

where the first functor in this composition sends objects to them-
selves and a morphism to the homotopy class of that morphism.





8 Covering maps and computations

Here are a couple of easy computations we can make right now.

Theorem 8.1. The fundamental group of a contractible space is the trivial
group.

Proof. Let X ' {x}. In particular, this implies X is path-connected
as cardinality of π0(X) is a homotopy invariant of a space. By
Corollary 7.26, for any choice of x0 ∈ X there is an isomorphism
π1(X, x0) ∼= π1({x}, x). The latter is clearly the trivial group.

Example 8.2. We now know that π1(R
n, 0) = 0 for any n ∈N.

Unfortunately, computing fundamental groups “bare hands” like this
turns out to be fairly laborious in most other situations. It quickly be-
comes important to have theorems for helping the process along, and
these would be developed in a longer course in Algebraic Topology.

In these notes, we will rely on the idea of covering spaces to make
a few simple computations of fundamental groups, primarily the
example of π1(S1) ∼= Z.

Covering maps

Definition 8.3. Let p : E → B be a map. We call p a covering map if
there is an open cover {Uα | α ∈ I} of B such that for each α ∈ I, the
preimage p−1(Uα) is the disjoint union of open sets, each mapped
homeomorphically to Uα by p.

If p : E → B is a covering map then we call E a covering space of B,
and call B the base space of p. For x ∈ B we refer to p−1({x}) as the
fibre over x.

Remark 8.4. The fibre over a point in the base of a covering map is
discrete. The existence of the open cover {Uα | α ∈ I} implies x ∈ Uα
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for some α ∈ I and there is a commuting triangle of maps

p−1(Uα) p−1({x})×Uα

Uα

∼=

p pr2

Example 8.5. Let A be any set with the discrete topology and X be
any space. Then the projection map pr2 : A× X → X is a covering
map. This is called a trivial cover. For example {1, 2}×X → X is called
the trivial double cover of X.

Example 8.6. Let S1 be the unit circle in the complex plane. The map

p : S1 → S1; p(z) = zn

is a covering map. To see this, write

A(a, b) = {eiθ ∈ S1 | θ ∈ (a, b)}

We can then for example, use the open cover {A(0, 2π), A(−π, π)}
of S1, in which case

p−1(A(0, 2π)) =
n⊔

k=0

A(2πk/n, 2π(k + 1)/n),

p−1(A(−π, π)) =
n⊔

k=0

A(π(2k− 1)/n, π(2k + 1)/n),

where

p : A(2πk/n, 2π(k + 1)/n)→ A(0, 2π)

p : A(π(2k− 1)/n, π(2k + 1)/n)→ A(−π, π)

are homeomorphisms for all k.

Example 8.7. The map

p : R→ S1; p(x) = exp(2πix)

is a covering map. To see this, and continuing the notation from the
previous example, use the open cover {A(0, 2π), A(−π, π)} of S1, in
which case

p−1(A(0, 2π)) =
⊔

n∈Z

(n, n+ 1), p−1(A(−π, π)s) =
⊔

n∈Z

(n− 1
2 , n+ 1

2 ),

where p : (n, n + 1)→ A(0, 2π) and p : (n− 1
2 , n + 1

2 )→ A(−π, π) are
homeomorphisms for all n.
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The homotopy lifting property

Covering maps have a strong property, which we now discuss.

Definition 8.8. Given any map of spaces p : E → B, and another
map f : Y → B, we call a map f̃ : Y → E a lift (along p) of f if the
following diagram commutes

E

Y B

p

f

f̃

Definition 8.9. A map p : E → B has the homotopy lifting property
(HLP) if, given a homotopy H : Y × [0, 1] → B, and a map h : Y ×
{0} → E such that p ◦ h = H|Y×{0}, there exists a unique map H̃
making the following diagram commute. You should read this as “once you have

lifted the start of the homotopy to E,
you can lift the entire thing, and in a
unique way.”

Y× {0} E

Y× [0, 1] B

h

p

H

H̃

The next proposition

Proposition 8.10. Let p : E → B be a map with the homotopy lifting
property. Let b ∈ B, suppose p−1({b}) is discrete, and let e ∈ p−1({b}).
Then the map

p∗ : π1(E, e)→ π1(B, b)

is injective. The subgroup

p∗(π1(E, e)) ≤ π1(B, b)

is the set of homotopy classes [γ] such that γ̃ is a loop (rather than a path
with γ̃(1) 6= e).

Proof. Let α be a loop in E such that p∗([α]) = 1. Then there is a
homotopy H : p ◦ α ' cb to the constant loop cb at the basepoint b.
Lifting this homotopy H̃ : I × [0, 1] → E, relative to α = H|I×{0},
we obtain a homotopy from α to some path α′ such that p ◦ α′ is
the constant map to the basepoint b. As p−1({b}) is a discrete set,
this implies α′ is a constant map to some point e′ ∈ p−1({b}). But
considering H̃|{0}×I is also the unique lift of the the constant loop at
the basepoint such that H̃|{0}×I(0, 0) = e, this must be the constant
map to e. In particular, H̃|{0}×I(0, 1) = e′ = e. So H̃ : α ' ce.
The identification of the subgroup is clear.

Definition 8.11. Let p : E → B be a map with the homotopy lifting
property. Let e ∈ E and write b = p(e). Define the connecting map

∂e : π1(B, b)→ p−1({b})
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by sending [γ] ∈ π1(B, b) to γ̃(1), where γ̃ is the unique lift of γ a
path in E starting at e.

Proposition 8.12. The connecting map is well-defined.

Proof. Suppose H : γ ' δ is a homotopy rel. b between loops γ and δ

in B, based at b. By the homotopy lifting property, there is a unique
lift of H to E, to a homotopy H̃ starting at γ̃. Consider that H|{0}×[0,1]
is the constant map to b ∈ B. As H̃(0, 0) = 0, this implies H̃|{0}×[0,1]
is the constant map to to e ∈ R. The path H̃|[0,1]×{1} is a lift of δ, and
we have just deduced this lift starts at e ∈ E, so it must be δ̃, as this
was the unique such lift. A similar line of reasoning, but using the
restrictions to {1} × [0, 1], shows that γ̃(1) = δ̃(1). So the map ∂e is
well defined on homotopy classes of loops.

Proposition 8.13. If E is simply connected then the connecting map is a
bijection.

Proof. For surjectivity, let e′ ∈ p−1({b}). As E is path connected,
we may choose a path α in E from e to e′. Then p ◦ α is a loop in B,
based at b, and such that ∂e([p ◦ α]) = e′. For injectivity, suppose that
∂e([γ]) = ∂e([γ′]). Then γ̃(1) = γ̃′(1). As E is simply connected, there
is a homotopy H (rel. e )from the loop γ̃ • (γ̃′)−1 to the constant loop
at the basepoint e. Then p ◦ H is a homotopy (rel. b) from γ • γ′)−1 to
the constant loop at b. Thus [γ] = [γ′].

Proof that covering maps have the HLP*

Theorem 8.14. Let p : E→ B be a covering map. Then p has the homotopy
lifting property.

Proof. Fix Y, H, and h, as in the definition of the homotopy lifting
property. We will prove existence and uniqueness of the lift “locally”
near a point y0 ∈ Y. We then say how to deduce the existence and
uniqueness of the global lift from the local statement.

To show local existence, fix any y0 ∈ Y. As f is continuous, for any
(y0, t) ∈ Y × I there exists an open set Nt × B(t; εt) ⊆ Y × I around
(y0, t), such that H(Nt × B(t; εt)) ⊆ Uα for some α ∈ I. As {y0} × I is
compact, we can cover it with finitely many such Nt× B(t; εt). Write N
for the intersection of the corresponding finite collection of Nt’s (note
that N is open). We can now choose a strictly increasing sequence

0 = t0 < t1 < t2 < · · · < tm = 1

so that H(N × [ti, ti+1]) ⊆ Uα for some α ∈ I. Write Ui for this Uα.
We now construct the lift H̃ iteratively. Suppose we constructed the
lift H̃ on N × [0, ti]. To extend the lift to N × [ti, ti+1], consider that
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there is an open set Ũi ⊆ R that maps homeomorphically to Ui

and is such that H̃(y0, ti) ∈ Ũi. We may assume, after reducing the
size of N, that H̃(N × {ti}) ⊆ Ũi. Now define H̃ on N × [ti, ti+1]

to be the composition of H : N × [ti, ti+1] → Ui followed by the
homeomorphism p−1 : Ui → Ũi. After finitely many iterations, there
is a lift H̃ on N × I.

We now show the uniqueness of the local H̃ just constructed. First, let
y ∈ Y be any point and assume we have a lift at {y} × I. We will show
this lift is unique. Suppose H̃ and H̃′ are two lifts at {y} × I, such that
H̃(y, 0) = H̃′(y, 0). Using a decomposition into intervals [ti, ti+1] as
before, we see that, as p is a homeomorphism p : Ũi → Ui, and the
paths H̃ and H̃′ restricted to {y} × [ti, ti+1] both project to the same
path under p, they must be the same path in Ũi. Starting at i = 0,
and using the fact that H̃(y, 0) = H̃′(y, 0), this uniqueness glues
together along the intervals {y} × [ti, ti+1] as i increases. This shows
H̃ and H̃′ agree on {y} × I. But now this was independent of y, so the
argument in fact shows the lift H̃ on N × I constructed in the previous
paragraph is unique.

Finally, we argue that the local version implies the global version. But
this is clear – construct unique local lifts H̃ on N × I at every y0 ∈ Y.
Where the lifts overlap, the uniqueness argument shows they agree
on the overlaps. Thus they patch together to form a global, unique
lift.

The fundamental group of the circle and projective space

Theorem 8.15. The fundamental group of the circle is π1(S1, 1) ∼= Z.

Proof. The map

p : R→ S1; x 7→ exp(2πix)

is a covering map, and therefore has the homotopy lifting property.
Note that the fibre p−1({1}) is Z ⊆ R. As R is simply connected,
Proposition 8.13 shows that the connecting map

∂0 : π1(S1, 1)→ Z

is a bijection. If we can show it is a group homomorphism, the theo-
rem is proved.

To see that ∂0 is a group homomorphism, let γ and δ be loops and
consider that for any integer N ∈ N, the path δ̃ + N is the unique
lift of δ to a path starting at N ∈ R. This shows that the (unique)
lift of γ • δ to R is the path γ̃ • (δ̃ + γ̃(1)). This path has endpoint
γ̃(1) + δ̃(1), so ∂0 is a homomorphism.
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Theorem 8.16. The fundamental group of real projective space RPn is

π1(RPn; [x]) ∼=
{

Z/2Z if n ≥ 2
Z if n = 1

Proof. The quotient map

q : Sn → RPn = Sn/{x ∼ −x}; q(x) = [x]

is a covering map. To see this, fix [x] ∈ RPn. Then we choose a
small enough ball B(x; ε) ⊆ Rn+1 so that for all y ∈ B(x; ε), we have
−y 6∈ B(x; ε). Then Ux = q(Sn ∩ B(x; ε)) is an open set around [x]
with q−1(Ux) = Ũ+ t Ũ−, where Ũ± = Sn ∩ B(±x; ε). Moreover
q : Ũ± → U is a homeomorphism.

For n > 1, we have that π1(Sn, e) = 0, so that the connecting map
∂e : π1(RPn, [x]) → {x,−x} is a bijection. As the only group of order
2 is Z/2Z, this proves the theorem.

If n = 1, we have that the map f : S1 → S1 given by f (z) = z2 is a
continuous surjective map that descends to a bijection on the quotient
RP1 → S1. As S1 is compact and Hausdorff, this shows RP1 ∼= S1,
and we have computed that π1(S1, 1) ∼= Z.
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The Brouwer fixed-point theorem

We write
Dn = {x ∈ Rn | ||x|| ≤ 1}.

The disc D2 is homeomorphic to a
rectangle. Take two sheets of paper
lying on top of each other on the table.
Pick up the top sheet and scrunch it
into a ball. Put it back down anywhere
you like on the bottom sheet. By the
Brouwer fixed-point theorem there is at
least one point on the scrunched up ball
sitting exactly above where it was when
the sheet was flat.

Theorem 9.1 (The Brouwer fixed-point theorem). Any continuous map
f : D2 → D2 has a fixed point, i.e., a point x ∈ D2 such that f (x) = x.

Proof. Suppose f : D2 → D2 has no fixed point. Define r : D2 → S1

to be the function that sends x ∈ D2 to the point on the circle where
the ray that starts at f (x) and passes through x intersects S1. This is
clearly a continuous map. Write i : S1 → D2 for the inclusion map.
We have a sequence of group homomorphisms

π1(S1, 1)︸ ︷︷ ︸
∼=Z

i∗−→ π1(D2, 1)︸ ︷︷ ︸
=0

r∗−→ π1(S1, 1)︸ ︷︷ ︸
∼=Z

.

But r(x) = x for all x ∈ S1 and thus this composition is the identity.
This is a contradiction as there is no sequence of group isomorphisms
Z→ 0→ Z that composes to be the identity map.

The degree of a map

Definition 9.2. Let f : S1 → S1 and let α be a path from f (1) to 1. Fix Recall that

• Every self-homomorphism of the
integers is multiplication by some
integer n. We are denoting this map
by ×n : Z→ Z.

• Cα([γ]) = [α−1 • γ • α]).

an isomorphism π1(S1, 1) ∼= Z. Define an integer deg( f ) ∈ Z, called
the degree of f , to make the following diagram commute

π1(S1, 1) π1(S1, f (1)) π1(S1, 1)

Z Z.

f∗

∼=

Cα

∼=
∼=

×deg( f )

(Some authors call deg( f ) the index of f .)

Remark 9.3. If we think of S1 as a subset of the complex plane, and
f : S1 → S1 as a loop, then the degree is equal to the winding number,
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which may be computed using a contour integral

deg( f ) =
1

2πi

∮
f

dz
z

,

as a special case of the Cauchy Integral Formula.

Proposition 9.4. The degree of f : S1 → S1 depends only on the homotopy
class of f .

Proof. First, a different choice of isomorphism π1(S1, 1) ∼= Z would
be multiplication by −1 on both vertical arrows in the diagram, so
these overall cancel out and we get the same integer deg( f ) ∈ Z. To
see independence of α, recall that by Remark 7.13 a different choice
would change the map in the top line overall by a conjugation. But as
Z is abelian this is the identity map. Finally, by Proposition 7.24, the
integer depends only on the homotopy class of f .

We will now present a couple of applications of the degree.

Theorem 9.5 (The fundamental theorem of algebra). For some n > 0, let

p(z) = zn + cn−1zn−1 + · · ·+ c1z + c0

be a polynomial with complex coefficients. Then there exists z ∈ C such that
p(z) = 0.

Proof. Suppose that p has no zeros. Then the following is well-
defined:

p̂ : S1 → S1; z 7→ p(z)
||p(z)|| .

We show that the degree of this map is both n and 0, which is a
contradication, as n > 0.
As p has no zeros, the homotopy H(z, t) = p(tz)/||p(tz)|| is well-
defined. At t = 0, this is the constant map

S1 → S1; x 7→ f (0)/|| f (0)||,

and at t = 1, this is p̂. But the constant map induces the 0-map on
homotopy groups, so this implies deg( p̂) = 0.
Consider as well that, as p has no zeros, there is a homotopy J(z, t) =
tn p(z/t) from the function z 7→ zn to p. Thus J(z, t)/||J(z, t)|| is a
homotopy from z 7→ zn to p̂. As the former clearly has degree n, this
shows deg( p̂) = n.

The Borsuk-Ulam theorem
For example, let f represent the NSEW
direction the wind is blowing at a point
on the Earth. The theorem says at any
given time you can find antipodal
points on the earth where the wind is
blowing exactly in the opposite cardinal
direction.

Theorem 9.6 (The Borsuk-Ulam Theorem). Let f : S2 → R2 be a map.
Then there exist antipodal points x and −x on S2, such that f (−x) =

− f (x).
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Proof. The theorem is equivalent to showing that the map

g : S2 → R2; g(x) = f (x)− f (−x)

must be 0 for some x. Note that g(x) = −g(x). Consider projecting
the unit disc in the complex plane onto the upper hemisphere of S2

via the map

D2 → S2; (x + iy) 7→ (x, y,
√

1− x2 − y2).

From this we obtain a map

h : D2 → R2; h(x + iy) = g(x, y,
√

1− x2 − y2).

Observe that the map h inherits from g the property that h(z) =

−h(z). If we can show that h vanishes at some point z on D2, we can
project it to the upper hemisphere of S2 and we have found a point
on S2 where g vanishes. We now show such a vanishing point for h
exists.

Suppose there does not exist z ∈ D2 such that h(z) = 0. Then we may
define a continuous function

ϕ : D2 → S1; ϕ(z) =
h(z)
||h(z)||

||h(1)||
h(1)

.

Note that ϕ(z) = −ϕ(−z) and ϕ(1) = 1. The map

γ : [0, 1]→ D2; γ(t) = exp(2πit)

is homotopic to the constant loop c1 via some homotopy H. Postcom-
posing with ϕ, we see that the loop ϕ ◦ γ in S1 is homotopic to the
constant map via the homotopy ϕ ◦ H. Thus ϕ ◦ γ has degree 0. We
will now argue that the deg(ϕ ◦ γ) is odd, giving a contradiction.

Let k : [0, 1] → R be the unique lift along the covering map R → S1

of the loop ϕ ◦ γ, in other words exp(2πik(s)) = ϕ(exp(2πis)). By
definition of the degree, we have deg(ϕ ◦ γ) = k(1). Consider that as
ϕ(z) = −ϕ(−z), we have

exp(2πik(s)) = ϕ(exp(2πis)) = −ϕ(− exp(2πis))

= −ϕ(exp(2πi(s + 1
2 )) = − exp(2πik(s + 1

2 )).

Thus

exp(2πik(s)) = − exp(2πik(s + 1
2 )) = exp(2πi(k(s + 1

2 )−
1
2 ),

so
(k(s + 1

2 ) +
1
2 )− k(s) ∈ Z
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for every s ∈ [0, 1/2]. But this is a continuous function of s, and
hence is a constant because Z is discrete. So there exists m ∈ Z such
that

k(s + 1
2 )− k(s) = m + 1

2 .

We compute

k(1) = (k(1)− k(1/2)) + (k(1/2)− k(0))

= (m + 1
2 ) + (m + 1

2 )

= 2m + 1

is odd.
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