
Lecture 3 - Vector Bundles and Surgery: Exercises

Fibre Bundles

1. Using appropriate fibration sequences, prove that πi(U(n)) ∼= πi(U(n + 1)) for i ≤ 2n + 1.
Calculate the following:

(a) πi(SO(n)) for i = 0, 1, 2 and n ≥ 1;

(b) π3(SO(n)) for n = 1, 2, 3, 4 (you may assume π4(S3) = Z2);

(c) πi(U(n)) for i = 1, 2 and n ≥ 1.

2. (Part III - Fibre Bundles) Calculate [O(2n)/U(n), Sn2

].

3. (Part III - Fibre Bundles) For which n does there exist an embedding RPn ×RPn → RP 2n

such that the induced map H∗(RP 2n;Z2) ∼= H∗(RPn × RPn;Z2) is an isomorphism? Does
there exist an immersion RP 2 × RP 2 → R5?

4. (Part III - Fibre Bundles) Let G = O(n), find H < G such that G/H ∼= RPn−1. Show that
for n odd

H∗(BO(n− 1);Q) ∼= H∗(BO(n);Q).

Why does this fail for n even?

Characteristic Classes

5. Find characteristic classes that completely classify:

(a) Real vector bundles over S2;

(b) Complex vector bundles over S2;

(c) Real vector bundles over S4.

Find 2 linearly independent real 4-plane bundles over S4. Hence show that there are infinitely
many vector bundles over S4 with Euler number 1.

6. Recall that Spin(n) is the universal cover of SO(n) and that

Spinc(n) = (Spin(n)× U(1))/(A, λ) ∼ (−A,−λ).

For M a closed manifold show:

(a) M is orientable if and only if w1(νM ) = 0;

(b) M is spinnable if and only if w1(νM ) = w2(νM ) = 0;

(c) M admits a Spinc-structure if and only if w1(νM ) = 0 and w2(νM ) is the mod 2 reduction
of an integral cohomology class.

You may use the fact that Spin(n) and Spinc(n) are topological groups.

7. For a closed 3-manifold M , show that w2
1(M) = w2(M).

8. (Diarmuid Crowley - Topology of Manifolds Summer School) For a closed 4k-dimensional
manifold M , let ν̃ : M → B be a normal (2k − 1)-smoothing. Show:

(a) If ∂M ' S3 then TM is trivial;

(b) If ∂M = ∅ and c : M → S4k is the map collapsing the exterior of a small disk in M to
a point then there is a vector bundle ξ over S4k such that c∗ξ ∼= TM .

(c) If J is the ‘J-homomorphism’ and Sξ is the suspension of ξ then J(Sξ) = 0 ∈ πs
4k−1.
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Vector Bundles

9. For h∗(·) a multiplicative cohomology theory define the Thom class of a vector bundle ξ over
M . Define the Euler class eh(ξ) of ξ and show that ξ admits a nowhere zero section if and
only if eh(ξ) vanishes.

10. Let f : Sn−1 → SO(k) be a clutching function for the bundle Ef over Sn. For appropriate
r and s, construct a class γf ∈ πr(Ss) that vanishes if and only if Ef admits a nowhere 0
section.

For k > n show that Ef = E′ ⊕ ε (you may use the fact that πr(Ss) = 0 for r < s).

Show that
πr(SO(s))→ πr(SO(s+ 1))

is sujective for r < s.

11. (a) Calculate the total Stiefel-Whitney class of RPn.

(b) Calculate the total Chern class of CPn.

(c) For any positive integer d, let

Sd =
{

[z0 : z1 : z2 : z3] ∈ CP 3|
∑

zdi = 0
}
.

Calculate the Chern classes of Sd in terms of (the pullback of) the generator ofH∗(CP 3;Z) =
Z〈x〉/(x4 = 0).

12. We should be able to cook up an exercise involving using the signature theorem
for 4-manifolds: σ(M) = 1

3 〈p1(X), [X]〉.

13. For k ≥ 2, determine the number of distinct Sk-bundles over S2.

For m ≥ 4, let S1 ↪→Mm be a nullhomotopic embedding. Show that the surgery on M with
respect to this embedding has effect M ′ = M#N , where N is an m-dimensional manifold to
be determined. When M is spin, show that M ′ is not uniquely determined.

Show that M ′ is uniquely determined for M not spin (difficult!).

Knot Theory

14. Let Ek → S2 be the complex plane bundle with euler number k. Explain how to obtain the
sphere-bundle S(Ek) via surgery on S3.

Show that S3 is the universal cover for S(Ek) and describe the deck transformations.

15. (Diarmuid Crowley - Topology of Manifolds Summer School) Let Wk be the trace of the
surgery on S3 with effect S(Ek). Verify that by gluing D4 to the component of ∂Wk that is
S3 we obtain a space homotopic to S2 and with intersection form [±k].

16. Consider the Hopf link in S3 with 0-framed components. Show directly that the two surgeries
these define have combined effect S3.
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17. (Part III - Morse Theory, 2005) Suppose ι : S1 × D1 ↪→ T 2 is an embedding such that
ι(S1 × {0} is a (p, q)-curve i.e. represents the homology class pa+ qb where a, b ∈ H1(T 2;Z)
are the two standard generators. Let M be the manifold obtained from T 2 by surgery with
respect to this embedding. Compute H∗(M ;Z) for the case p, q > 0. Deduce a necessary and
sufficient condition on strictly positive integers p and q for a (p, q)-curve to exist. (You may
assume that a closed, oriented, smooth real surface is diffeomorphic to a surface of genus g
for some g ≥ 0.)

18. Let K be an embedded S1 ↪→ S3 with a closed tubular neighbourhood νK ∼= S1 × D2. A
Dehn surgery on K is the process of removing int(νK) and gluing back a copy of S1 ×D2

by any diffeomorphism
φ : S1 × ∂D2 → ∂νK

of the boundary tori. Orienting K, let µ be a right-handed meridian and λ ∈ H1(∂νK;Z)
be a 0-framed copy of K pushed to the boundary of νK. A Lens space L(p,−q) is defined
to be the effect of Dehn surgery on the standard embedding S1 ↪→ S3 with φ such that

φ∗([∂D
2]) = pµ+ qλ.

(a) Show L(±2, 1) ' RP 3, L(±1, 1) = L(p, 0) = S3.

(b) Prove the ‘slam dunk’ - that the combined effect of the two surgeries on the Hopf link in
S3 with framings m and n on the respective components is the Lens space L(1−mn, n).

Hence show that any Lens space is null-cobordant (Hint: it may help to prove that
L(p,−q) = L(−p, q) so that we can unambiguously consider the Dehn surgery generating
the space as ‘p/q-surgery’ on the embedded S1).

19. Should be a nice exercise about plumbing somewhere in here... How to interpret
plumbing as surgery?

Here’s a good exercise but I don’t know where to put it:
(Part III - Algebraic Topology, 2005) Show that

• K(G,n)×K(H,n) ' K(G×H,n).

• Describe a K(Zp, 1). Calculate the rings H∗(K(Zp;Zp) and H∗(K(Zp × Zp, 1);Zp).

• Let Mm be a cell complex and X be the result of attaching a single (n+ 1)-cell and finitely
many i-cells to M (for i ≥ n+ 2). Show that Hn+1(X;Zp) = 0 or Zp.

Let G act on Sn for n > 1 and M = Sn/G. By adding cells to kill πi(M) for i ≥ n, show that
G 6= Zp × Zp. (You may assume homotopy groups of spheres are finitely generated.)
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