Carmen Rovi

Monday, 19 September 2011

Definition of cobordism

A **cobordism** of closed *m*-dimensional manifolds M_0^m and M_1^m is a (m+1)-dimensional manifold W^{m+1} with boundary

$$\partial W = \bar{M_0} \sqcup M_1$$
,

where \overline{M}_0 denotes M_0 with reverse orientation.

$$\partial W = \bar{M}_0 \sqcup M_1.$$

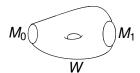
Definition

Definition of cobordism

A **cobordism** of closed m-dimensional manifolds M_0^m and M_1^m is a (m+1)-dimensional manifold W^{m+1} with boundary

$$\partial W = \bar{M}_0 \sqcup M_1$$
,

where \bar{M}_0 denotes M_0 with reverse orientation.



$$\partial W = \bar{M}_0 \sqcup M_1.$$

Basic properties of cobordims

Properties of the cobordism relation

Denoting the Cobordism relation as \sim , we define the following properties:

- $(i) \sim is$ an equivalence relation,
- (ii) $M \sim N$ implies $\partial M \cong \partial N$,
- (iii) For all manifolds M, $\partial M \sim \emptyset$,
- (iv) $M_1 \sim M_2$ and $N_1 \sim N_2 \Longrightarrow M_1 + N_1 \sim M_2 + N_2$.

Cobordism ring

The equivalence classes Ω_n of *n*-dimensional manifolds form an abelian group.

The direct sum of these abelian groups Ω_n of cobordism classes [M] of n-dimensional manifolds,

$$\Omega_* = \bigoplus_{n \geq 0} \Omega_n,$$

form a graded, commutative ring.

Cobordism ring

The equivalence classes Ω_n of *n*-dimensional manifolds form an abelian group.

The direct sum of these abelian groups Ω_n of cobordism classes [M] of n-dimensional manifolds,

$$\Omega_* = \bigoplus_{n>0} \Omega_n,$$

form a graded, commutative ring.

an important question!

...But how do we compute cobordism groups?

Grassmann manifolds

Grassmann manifolds

is the Grassmann manifold consisting of unoriented r-planes through the origin in \mathbb{R}^{r+n} .

$$Gr(r,n) \stackrel{i}{\longrightarrow} Gr(r,n+1) \longrightarrow \ldots \longrightarrow Gr(r,\infty) = BO_r.$$

Canonical bundles of Gr(r, n):

- The universal bundle $\gamma_{r,n}$
 - Its orthogonal complement $\gamma_{r,n}^{\perp}$.

Grassmann manifolds

Grassmann manifolds

is the Grassmann manifold consisting of unoriented r-planes through the origin in \mathbb{R}^{r+n} .

$$Gr(r,n) \stackrel{i}{\longrightarrow} Gr(r,n+1) \longrightarrow \ldots \longrightarrow Gr(r,\infty) = BO_r.$$

Canonical bundles of Gr(r, n):

- The universal bundle $\gamma_{r,n}$
 - Its orthogonal complement $\gamma_{r,n}^{\perp}$.

Grassmann manifolds

Grassmann manifolds

is the Grassmann manifold consisting of unoriented r-planes through the origin in \mathbb{R}^{r+n} .

$$Gr(r,n) \stackrel{i}{\longrightarrow} Gr(r,n+1) \longrightarrow \ldots \longrightarrow Gr(r,\infty) = BO_r.$$

Canonical bundles of Gr(r, n):

- The universal bundle $\gamma_{r,n}$
- Its orthogonal complement $\gamma_{r,n}^{\perp}$.

Pullback constructions

$$i^*\tau(\mathbb{R}^{n+r}) \longrightarrow \tau(\mathbb{R}^{n+r})$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow \mathbb{R}^{n+r}$$

similarly,

$$\begin{array}{ccc}
\nu(M) & \longrightarrow \gamma_{r,n} \\
\downarrow & & \downarrow \\
M & \longrightarrow Gr(r,n)
\end{array}$$

Classifying map

$$\nu(M) \longrightarrow \gamma_{r,n} \longrightarrow \gamma_{r,n+1} \longrightarrow \cdots \longrightarrow \gamma_{r,\infty} = \gamma_r$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow Gr(r,n) \longrightarrow Gr(r,n+1) \longrightarrow \cdots \longrightarrow Gr(r,\infty) = BO_r$$

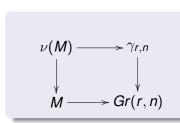
Pullback constructions

$$i^*\tau(\mathbb{R}^{n+r}) \longrightarrow \tau(\mathbb{R}^{n+r})$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow \mathbb{R}^{n+r}$$

similarly,



Classifying map

$$\nu(M) \longrightarrow \gamma_{r,n} \longrightarrow \gamma_{r,n+1} \longrightarrow \cdots \longrightarrow \gamma_{r,\infty} = \gamma_r$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow Gr(r,n) \longrightarrow Gr(r,n+1) \longrightarrow \cdots \longrightarrow Gr(r,\infty) = BO_r$$

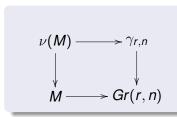
Pullback constructions

$$i^*\tau(\mathbb{R}^{n+r}) \longrightarrow \tau(\mathbb{R}^{n+r})$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow \mathbb{R}^{n+r}$$

similarly,



Classifying map

$$\nu(M) \longrightarrow \gamma_{r,n} \longrightarrow \gamma_{r,n+1} \longrightarrow \cdots \longrightarrow \gamma_{r,\infty} = \gamma_r$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M \longrightarrow Gr(r,n) \longrightarrow Gr(r,n+1) \longrightarrow \cdots \longrightarrow Gr(r,\infty) = BO_r$$

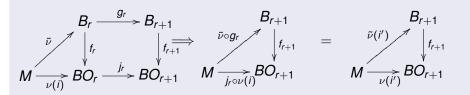
 (B_r, f_r) structure

Let $\nu(i): M \longrightarrow BO_r$ be the classifying map of the normal bundle ν . A (B_r, f_r) structure on the normal bundle is defined when for the following diagram it holds that $\nu \simeq f_r \circ \stackrel{\sim}{\nu}$, i.e. when the diagram commutes,

Moreover, any two liftings $\stackrel{\sim}{\nu_1}$ and $\stackrel{\sim}{\nu_2}$ are equivalent if they are homotopic. That is, if there exists a map $H: M \times I \longrightarrow B_r$ such that $H|_{M \times \{0\}} = \stackrel{\sim}{\nu_1}$, $H|_{M \times \{1\}} = \stackrel{\sim}{\nu_2}$ and $f_r \circ H(m,t) = \nu(m)$ for all $m \in M$ and $t \in I$.

(B, f) structures

(B, f) structures



Such a sequence of (B_r, f_r) structures defines a (B, f) structure.

Thom spaces

Definition (Thom space)

Let ξ be a vector bundle.

The total space of this vector bundle by $E(\xi)$.

Consider a subset of this total space A consisting of all the vectors of length at least one, i.e. $A = \{v \in E(\xi) : |v| \ge 1\}$.

Then the **Thom space** of ξ , $T(\xi)$, is obtained by collapsing the whole of A to a point, which we will denote by ∞ .

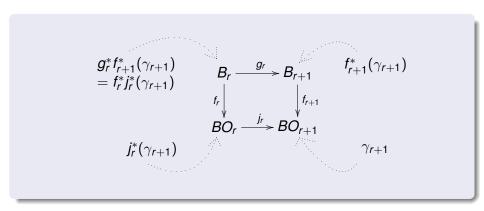
Applying the Thom space construction

Aplying the Thom space construction to the first commutative diagram gives us the maps of Thom spaces as shown,

$$B_r \xrightarrow{g_r} B_{r+1}$$
 ΣTB_r
 $f_r \downarrow \qquad \downarrow f_{r+1} \implies \qquad \Sigma Tf_r \downarrow$
 $BO_r \xrightarrow{j_r} BO_{r+1} \implies \qquad \Sigma TBO_r$

$$\begin{array}{c|c} \Sigma TB_r & \xrightarrow{Tg_r} & TB_{r+1} \\ \Sigma Tf_r & & & \downarrow Tf_{r+1} \\ \Sigma TBO_r & \xrightarrow{Tj_r} & TBO_{r+1} \end{array}$$

Vector bundles



Stable homotopy group

The suspension map Σ induces the following map between homotopies,

$$\Sigma: \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(\Sigma TB_r, \infty).$$

The map $Tg_r: \Sigma TB_r \longrightarrow TB_{r+1}$ induces:

$$Tg_r: \pi_{n+r+1}(\Sigma TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty).$$

Composing these two maps we obtain,

$$Tg_r \circ \Sigma : \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty),$$

$$\lim_{r\to\infty}\pi_{n+r}(TB_r,\infty).$$

Stable homotopy group

The suspension map Σ induces the following map between homotopies,

$$\Sigma: \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(\Sigma TB_r, \infty).$$

The map $Tg_r : \Sigma TB_r \longrightarrow TB_{r+1}$ induces:

$$Tg_r: \pi_{n+r+1}(\Sigma TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty).$$

Composing these two maps we obtain,

$$Tg_r \circ \Sigma : \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty),$$

$$\lim_{r\to\infty}\pi_{n+r}(TB_r,\infty).$$

Stable homotopy group

The suspension map Σ induces the following map between homotopies,

$$\Sigma: \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(\Sigma TB_r, \infty).$$

The map $Tg_r : \Sigma TB_r \longrightarrow TB_{r+1}$ induces:

$$Tg_r: \pi_{n+r+1}(\Sigma TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty).$$

Composing these two maps we obtain,

$$Tg_r \circ \Sigma : \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty),$$

$$\lim_{r\to\infty}\pi_{n+r}(TB_r,\infty).$$

Stable homotopy group

The suspension map Σ induces the following map between homotopies,

$$\Sigma: \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(\Sigma TB_r, \infty).$$

The map $Tg_r : \Sigma TB_r \longrightarrow TB_{r+1}$ induces:

$$Tg_r: \pi_{n+r+1}(\Sigma TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty).$$

Composing these two maps we obtain,

$$Tg_r \circ \Sigma : \pi_{n+r}(TB_r, \infty) \longrightarrow \pi_{n+r+1}(TB_{r+1}, \infty),$$

$$\lim_{r\to\infty}\pi_{n+r}(\mathit{TB}_r,\infty).$$

Thom Cobordism theorem

Thom Cobordism Theorem

Let Ω_n be the cobordism group of *n*-dimensional (B, f) manifolds. Then,

$$\Omega_n(B,f) \cong \lim_{r \to \infty} \pi_{n+r}(TB_r, \infty).$$

...but first...

Time for a break!

Thom Cobordism theorem

Want to prove:

$$\Omega_n(B,f) \cong \lim_{r\to\infty} \pi_{n+r}(TB_r,\infty).$$

Vital elements in the proof:

- Definition of transversality
- Sard-Thom transversality theorem
- Pontryagin-Thom construction

Tranversality

Transversality

Let g be the map $g: \mathbb{N}^n \to T(\xi)$, where $T(\xi)$ is the Thom space of r-bundle $\xi: X \to BO_r$.

Then g is **transverse** at the zero section $X \hookrightarrow T(\xi)$ if the inverse image is a closed (n-r)-dimensional submanifold,

$$M^{n-r}=g^{-1}(X)\subseteq N$$

Sard-Thom Transversality Theorem

Sard-Thom Transversality Theorem

Every continuous map $N^n \to T(\xi)$ from an n-dimensional manifold to the Thom space $T(\xi)$ of the r-bundle $\xi: X \to BO_r$ is homotopic to a map $g: N^n \to T(\xi)$, which is transverse at the zero section $X \hookrightarrow T(\xi)$.

The proof of the Thom Cobordism Theorem

First step: We first consider the map

 $\Theta: \Omega_n(B, f) \longrightarrow \lim_{n \to \infty} \pi_{n+r}(TB_r, \infty)$. Our first goal is to show that the map Θ is well defined and to describe an element of $\lim_{n \to \infty} \pi_{n+r}(TB_r, \infty)$.

- Consider a cobordism class $[M] \in \Omega_n$.
- Let $i: M \longrightarrow \mathbb{R}^{n+k}$, be an embedding.
- The classifying map of the normal bundle is then given by $\nu(i): M \longrightarrow BO_r$.
- We denote the total space of this bundle by N and the projection map by π : N → M.

The proof of the Thom Cobordism Theorem

First step: We first consider the map

 $\Theta: \Omega_n(B,f) \longrightarrow \lim_{n \to \infty} \pi_{n+r}(TB_r,\infty)$. Our first goal is to show that the map Θ is well defined and to describe an element of $\lim_{n \to \infty} \pi_{n+r}(TB_r,\infty)$.

- Consider a cobordism class $[M] \in \Omega_n$.
- Let $i: M \longrightarrow \mathbb{R}^{n+k}$, be an embedding.
- The classifying map of the normal bundle is then given by $\nu(i): M \longrightarrow BO_r$.
- We denote the total space of this bundle by N and the projection map by π : N → M.

The proof of the Thom Cobordism Theorem

Choose a tubular neighbourhood N_{ϵ} of M.

We now write S^{n+r} as $\mathbb{R}^{n+r} \cup \infty$ and consider the map

$$c: S^{n+r} \longrightarrow N_{\epsilon}/\partial N_{\epsilon},$$

We also define the map,

$$\epsilon^{-1}: N_{\epsilon}/\partial N_{\epsilon} \longrightarrow Th(\nu M).$$

Composing these maps,

$$\mathbb{R}^{n+r} \cup \infty = S^{n+r} \stackrel{c}{\longrightarrow} N_{\epsilon}/\partial N_{\epsilon} \stackrel{\epsilon^{-1}}{\longrightarrow} \mathit{Th}(\nu M).$$

The proof of the Thom Cobordism Theorem

Choose a tubular neighbourhood N_{ϵ} of M.

We now write S^{n+r} as $\mathbb{R}^{n+r} \cup \infty$ and consider the map

$$c: S^{n+r} \longrightarrow N_{\epsilon}/\partial N_{\epsilon},$$

We also define the map,

$$\epsilon^{-1}: N_{\epsilon}/\partial N_{\epsilon} \longrightarrow Th(\nu M).$$

Composing these maps,

$$\mathbb{R}^{n+r} \cup \infty = S^{n+r} \stackrel{\mathcal{C}}{\longrightarrow} N_{\epsilon}/\partial N_{\epsilon} \stackrel{\epsilon^{-1}}{\longrightarrow} \mathit{Th}(
u M).$$

The proof of the Thom Cobordism Theorem

Choose a tubular neighbourhood N_{ϵ} of M.

We now write S^{n+r} as $\mathbb{R}^{n+r} \cup \infty$ and consider the map

$$c: S^{n+r} \longrightarrow N_{\epsilon}/\partial N_{\epsilon},$$

We also define the map,

$$\epsilon^{-1}: N_{\epsilon}/\partial N_{\epsilon} \longrightarrow \mathit{Th}(\nu M).$$

Composing these maps,

$$\mathbb{R}^{n+r} \cup \infty = S^{n+r} \stackrel{c}{\longrightarrow} N_{\epsilon}/\partial N_{\epsilon} \stackrel{\epsilon^{-1}}{\longrightarrow} Th(\nu M).$$

The proof of the Thom Cobordism Theorem

So we have,

$$\mathbb{R}^{n+r} \cup \infty = S^{n+r} \xrightarrow{c} N_{\epsilon}/\partial N_{\epsilon} \xrightarrow{\epsilon^{-1}} Th(\nu M).$$

Composing this with the natural inclusions of Grassmann manifolds, we obtain,

$$S^{n+r} \stackrel{c}{\longrightarrow} N_{\epsilon}/\partial N_{\epsilon} \stackrel{\epsilon^{-1}}{\longrightarrow} Th(\nu M) \longrightarrow Th(\gamma_{r,n}) \longrightarrow \ldots \longrightarrow Th(\gamma_{r}) = TBO_{r}.$$

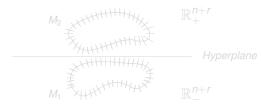
Definition of the element θ

So we have now defined a map $\theta: S^{n+r} \longrightarrow TBO_r$, and hence we have an element of $\lim_{n\to\infty} \pi_{n+r} TBO_r$.

The proof of the Thom Cobordism Theorem

Second step: We now want to show that the map $\Theta: \Omega_n(B, f) \to \lim_{\substack{n \to \infty \\ n \to \infty}} \pi_{n+r}(TB_r, \infty)$ is an homomorphism. So we want to show that $\Theta([M_1] + [M_2]) = \Theta([M_1]) + \Theta([M_2])$.

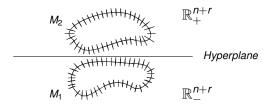
- Choose $[M_1], [M_2] \in \Omega_n(B, f)$ and embeddings $i_1 : M_1 \longrightarrow \mathbb{R}^{n+r}$ and $i_2 : M_2 \longrightarrow \mathbb{R}^{n+r}$ which send M_1 and M_2 into different half planes.
- Also choose tubular neighbourhoods N_{ϵ}^1 of M_1 and N_{ϵ}^2 of M_2



The proof of the Thom Cobordism Theorem

Second step: We now want to show that the map $\Theta: \Omega_n(B, f) \to \lim_{\substack{n \to \infty \\ n \to \infty}} \pi_{n+r}(TB_r, \infty)$ is an homomorphism. So we want to show that $\Theta([M_1] + [M_2]) = \Theta([M_1]) + \Theta([M_2])$.

- Choose $[M_1], [M_2] \in \Omega_n(B, f)$ and embeddings $i_1 : M_1 \longrightarrow \mathbb{R}^{n+r}$ and $i_2 : M_2 \longrightarrow \mathbb{R}^{n+r}$ which send M_1 and M_2 into different half planes.
- Also choose tubular neighbourhoods N_{ϵ}^1 of M_1 and N_{ϵ}^2 of M_2



The proof of the Thom Cobordism Theorem

We obtain the map,

$$S^{n+r} \xrightarrow{\text{collapsing}} S^{n+r} \vee S^{n+r} \xrightarrow{\Theta[M_1] \vee \Theta[M_2]} TB_r.$$

This is the same map as defined by the sum of homotopy classes:

$$\Theta[M_1] + \Theta[M_2] \Longrightarrow \Theta([M_1] + [M_2]) = \Theta[M_1] + \Theta[M_2]$$

Hence Θ is a homomorphism.

The proof of the Thom Cobordism Theorem

Surjective

Third step: We now Show that

$$\Theta: \Omega_n(B,f) \longrightarrow \lim_{n \to \infty} \pi_{n+r}(TB_r, \infty)$$

is surjective,

We start by noting that S^{n+r} is compact, so for any open cover we can find a finite subcover. That is, for some s, we have $Tf_r \circ \theta(S^{n+r}) \subset Th(\gamma_{r+s})$.

The proof of the Thom Cobordism Theorem

So we homotope the map $Tf_r \circ \theta : S^{n+r} \longrightarrow Th(\gamma_{r,n})$ to a new (homotopic) map $\tilde{\theta}$ such that:

- (i) $\tilde{\theta}$ is differentiable on a neighbourhood of Gr(r, s).
- (ii) $\tilde{\theta}$ is transverse regular on Gr(r,s), which is the zero section of $\gamma_{r,s}$. This implies that $\tilde{\theta}^{-1}(Gr(r,s))$ is a manifold, i.e. $M=\tilde{\theta}^{-1}(Gr(r,s))$. The dimension of M is $\dim M=\dim \tilde{\theta}^{-1}(Gr(r,s))=n$, since M has the same codimension as Gr(r,s) in \mathbb{R}^{n+r} .
- (iii) Evaluating the map $\tilde{\theta}^{-1}$ on a small neighbourhood of Gr(r,s) gives us a tubular neighbourhood of M.

The proof of the Thom Cobordism Theorem

Injective

Fourth step: To finish the proof we will show that the map Θ is injective.

Let M be a (B, f) manifold, such that $M \in \text{Ker}(\Theta)$. Then for some r, the map $\Theta(M): S^{n+r} \longrightarrow TB_r$ is homotopic to the trivial map $t: S^{n+r} \longrightarrow \infty$.

By compactness of S^{n+r} , we have $S^{n+r}\stackrel{L}{\longrightarrow} TB_r\stackrel{Tf_r}{\longrightarrow} TBO_r$, so that,

 $S^{n+r} \times [0,1] \subset Th(\gamma_{r,s})$ for some $s \geq n$.

The proof of the Thom Cobordism Theorem

Injective

Fourth step: To finish the proof we will show that the map Θ is injective.

Let M be a (B, f) manifold, such that $M \in \text{Ker}(\Theta)$. Then for some r, the map $\Theta(M): S^{n+r} \longrightarrow TB_r$ is homotopic to the trivial map $t: S^{n+r} \longrightarrow \infty$.

By compactness of S^{n+r} , we have $S^{n+r} \xrightarrow{L} TB_r \xrightarrow{Tf_r} TBO_r$, so that,

 $S^{n+r} \times [0,1] \subset Th(\gamma_{r,s})$ for some $s \geq n$.

The proof of the Thom Cobordism Theorem

We now want to "deform" or homotope $Tf_r \circ L$ to a map H_r in a neighbourhood of Gr(r,s). This map H_r satisfies the following properties:

- (i) H_r is differentiable on a neighbourhood of Gr(r, s).
- (ii) H_r is transverse on Gr(r, s).

This implies that,

- (1) $W = H_r^{-1}(Gr(r,s))$ is a manifold, in fact a submanifold of $\mathbb{R}^{n+r} \times [0,1]$.
- (2) $\partial W = W \cap \partial (S^{n+r} \times [0,1]) = M \text{ and } \partial W \subseteq \mathbb{R}^{n+r} \times 0.$
- (3) $H_r|_W$ is the normal map $W \xrightarrow{\nu = H_r|_W} TBO_r$.

By the covering homotopy theorem we deduce that [M] is the zero class of $\Omega_n(B, f)$.

The proof of the Thom Cobordism Theorem

We now want to "deform" or homotope $Tf_r \circ L$ to a map H_r in a neighbourhood of Gr(r,s). This map H_r satisfies the following properties:

- (i) H_r is differentiable on a neighbourhood of Gr(r, s).
- (ii) H_r is transverse on Gr(r, s).

This implies that,

- (1) $W = H_r^{-1}(Gr(r,s))$ is a manifold, in fact a submanifold of $\mathbb{R}^{n+r} \times [0,1]$.
- (2) $\partial W = W \cap \partial (S^{n+r} \times [0,1]) = M$ and $\partial W \subseteq \mathbb{R}^{n+r} \times 0$.
- (3) $H_r|_W$ is the normal map $W \xrightarrow{\nu = H_r|_W} TBO_r$.

By the covering homotopy theorem we deduce that [M] is the zero class of $\Omega_n(B, f)$.

The Thom Cobordism Theorem

So we have now proved the Thom Cobordism Theorem,

$$\Omega_n(B, f) \cong \lim_{r \to \infty} \pi_{n+r}(TB_r, \infty).$$

Thank you for listening!