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Cobordism theory

Definition

Definition of cobordism

A cobordism of closed m-dimensional manifolds M{" and M{" is a
(m + 1)-dimensional manifold W™+ with boundary

aW:Mol_lM1,

where M, denotes M, with reverse orientation.
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Cobordism theory

Definition

Definition of cobordism

A cobordism of closed m-dimensional manifolds M{" and M{" is a
(m + 1)-dimensional manifold W™+ with boundary

aW:Mol_lM1,

where M, denotes M, with reverse orientation.

MO‘ > M1 8W:M0|_|M1.
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Cobordism theory

Basic properties of cobordims

Properties of the cobordism relation

Denoting the Cobordism relation as ~, we define the following
properties:
(i) ~ is an equivalence relation,
(i)) M ~ N implies OM = ON,
(iii) For all manifolds M, OM ~ 0,
(iv) My ~ Mo and Ny ~ No = My + Ny ~ Mo + No.
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Cobordism theory

Cobordism ring

The equivalence classes 2, of n-dimensional manifolds form an
abelian group.
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Cobordism theory

Cobordism ring

The equivalence classes 2, of n-dimensional manifolds form an
abelian group.

The direct sum of these abelian groups €, of cobordism classes [M] of
n-dimensional manifolds,

Q* - @Qn’

n>0

form a graded, commutative ring.
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Cobordism theory

an important question!

...But how do we compute cobordism groups?
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Cobordism theory

Grassmann manifolds

Grassmann manifolds

Gr(r,n)

is the Grassmann manifold consisting of unoriented r-planes through
the origin in R™".
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Cobordism theory
Grassmann manifolds

Grassmann manifolds

Gr(r,n)

is the Grassmann manifold consisting of unoriented r-planes through
the origin in R™".

Gr(r,n) U Gr(r,n+1) — ... — Gr(r,) = BOr. J
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Cobordism theory
Grassmann manifolds

Grassmann manifolds

Gr(r,n)

is the Grassmann manifold consisting of unoriented r-planes through
the origin in R™".

Gr(r,n) U Gr(r,n+1) — ... — Gr(r,) = BOr. J

Canonical bundles of Gr(r, n):
@ The universal bundle ~; 5
@ Its orthogonal complement ~;,.
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Cobordism theory

Pullback constructions

P*r (R —— 7 (R

o,

M Rn+r
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Cobordism theory
Pullback constructions

*r (R —— 7 (R . v(M) ———rn
i i similarly, l l
M i R M —— Gr(r, n)

Carmen Rovi (University of Edinburgh) Surgery Theory Group 2011 7130



Cobordism theory

Pullback constructions

i (RMT) — (R iy V(M) ——=Yrn
| | .
M ——— Rotr M ——— Gr(r, n)
v(M) Yr,n Vr,n+1 e Yroo = Vr
. | |
M ——-s Gr(r,n)—— Gr(r,n+1)—— ... Gr(r,o0) = BO;
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Cobordism theory

(B, fr) structure

Let v(i) : M — BO; be the classifying map of the normal bundle v. A
(B, fr) structure on the normal bundle is defined when for the following
diagram it holds that v ~ f, o 1, i.e. when the diagram commutes,

B,

.
Moreover, any two liftings v; and » are equivalent if they are
homotopic. That is, if there exists a map H: M x | — B, such that
Hlmx oy = V1 » Hlmx {1y = v2 and f, o H(m, t) = v(m) for all m € M and
tel.
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Cobordism theory

(B, f) structures

(B, f) structures

Br $ r+1 Br+1 ; Br+1
/ ifr ler:} W lfrﬂ = A4 lfrﬂ
Jr -
M — & BO; BO..1 M jrw(,.)BOm M—= BO, 4

Such a sequence of (B, f;) structures defines a (B, f) structure.
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Cobordism theory

Thom spaces

Definition (Thom space)

Let £ be a vector bundle.

The total space of this vector bundle by E(¢).

Consider a subset of this total space A consisting of all the vectors of
length at least one, i.e. A= {v e E(&):|v|>1}.

Then the Thom space of ¢, T(¢), is obtained by collapsing the whole
of A to a point, which we will denote by cc.
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Cobordism theory
Applying the Thom space construction

Aplying the Thom space construction to the first commutative diagram
gives us the maps of Thom spaces as shown,

B Bris STB, — %+ TB, 4
frl lfr+1 — > Tffl l Thoq
BO, —~ BO, Tir
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Cobordism theory

Vector bundles

g;'i< f;k-|-.1 ('7r+1 )
= 5 (V1)

i o
B —— r+1

frl J{fr+1

BOr —> BOr+1

j:(')’r+1) . :

f;k+1 (Yr+1)

Yr+1
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Cobordism theory

Stable homotopy group

The suspension map ¥ induces the following map between
homotopies,

Y e (TBr, 00) — mpari1(XTBy, 00).
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Cobordism theory

Stable homotopy group

The suspension map ¥ induces the following map between
homotopies,

Y e (TBr, 00) — mpari1(XTBy, 00).

The map Tg, : XTB, — TB,,1 induces:

Tgr 7Tn+r+1 (Z TB", OO) — 7Tn+r_l’_1 (TBr+1 5 OO).
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Cobordism theory

Stable homotopy group

The suspension map ¥ induces the following map between
homotopies,

Y e (TBr, 00) — mpari1(XTBy, 00).
The map Tg, : XTB, — TB,,1 induces:

Tgr 7Tn+r+1 (Z TB", OO) — 7Tn+r_l’_1 (TBr+1 5 OO).

Composing these two maps we obtain,

TgroX : mnir(TBr,00) — Tppry1(TBryq,00),
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Cobordism theory
Stable homotopy group
The suspension map ¥ induces the following map between

homotopies,

Y e (TBr, 00) — mpari1(XTBy, 00).

The map Tg, : XTB, — TB,,1 induces:

Tgr 7Tn+r+1 (Z TB", OO) — 7Tn+r+1 (TBr+1 5 OO).

Composing these two maps we obtain,

TgroX : mnir(TBr,00) — Tppry1(TBryq,00),

and from this map we can define the stable homotopy group,

ringoﬂ'n_i_r( TBr, OO)
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Cobordism theory
Thom Cobordism theorem

Thom Cobordism Theorem

Let Q, be the cobordism group of n-dimensional (B, f) manifolds.
Then,
Qn(B, f) = r/Lm Tntr(TBr, 00).
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...but first...
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Time for a break!
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Cobordism theory
Thom Cobordism theorem

Want to prove:

Qn(B, f) = rli)ngoﬂn+r(TBr, OO)

Vital elements in the proof:

@ Definition of transversality
@ Sard-Thom transversality theorem
@ Pontryagin-Thom construction
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Cobordism theory

Tranversality

Transversality

Let g be the map g : N" — T(&), where T(¢) is the Thom space of
r-bundle ¢ : X — BO;.

Then g is transverse at the zero section X — T(¢&) if the inverse
image is a closed (n — r)-dimensional submanifold,

M- — g—1(X) CN
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Cobordism theory
Sard-Thom Transversality Theorem

Sard-Thom Transversality Theorem

Every continuous map N" — T(&) from an n-dimensional manifold to
the Thom space T (&) of the r-bundle £ : X — BO; is homotopic to a
map g : N — T(¢), which is transverse at the zero section X — T(¢&).
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Cobordism theory
The proof of the Thom Cobordism Theorem

First step: We first consider the map
©:Qu(B,f) — nle Tn+r( TBr, 00). Our first goal is to show that the

map © is well defined and to describe an element of nli)m Tntr(TBr, 00).
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Cobordism theory
The proof of the Thom Cobordism Theorem

First step: We first consider the map
©: Qu(B,f) — nle mn+r(TBr, 00). Our first goal is to show that the

map © is well defined and to describe an element of nli)m Tntr(TBr, 00).

@ Consider a cobordism class [M] € Q.

@ Leti: M — R™k be an embedding.

@ The classifying map of the normal bundle is then given by
v(i): M — BO;.

@ We denote the total space of this bundle by N and the projection
mapby 7 : N — M.
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Cobordism theory

The proof of the Thom Cobordism Theorem

Choose a tubular neighbourhood N, of M.

We now write S™" as R U oo and consider the map
c: 8™ — N,/ON.,,
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Cobordism theory
The proof of the Thom Cobordism Theorem

Choose a tubular neighbourhood N, of M.

We now write S™" as R U oo and consider the map
c:S™" — N./ON,,
We also define the map,
e ' N./JON. — Th(vM).
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Cobordism theory
The proof of the Thom Cobordism Theorem

Choose a tubular neighbourhood N, of M.

We now write S™" as R U oo and consider the map
c:S™" — N./ON,,
We also define the map,
e ' N./JON. — Th(vM).

Composing these maps,

n+r _ aQnt+r C !
R U oo = 8™ %5 N, /ON. < Th(vM).
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Cobordism theory

The proof of the Thom Cobordism Theorem

So we have,

R™ U oo = S™7 %5 N,/ON. <5 Th(vM).

Composing this with the natural inclusions of Grassmann manifolds,
we obtain,

S™Mr Sy N.JON. < Th(vM) —s Th(yr.n) —> ... —s Th(y;) = TBO;.

Definition of the element 4

So we have now defined a map ¢ : S"*" — TBO,, and hence we have
an element of nle Tnir 1BO.
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Cobordism theory
The proof of the Thom Cobordism Theorem

Second step: We now want to show that the map
©: Qn(B,f) — n/L')m Tn+r( TBr, 00) is an homomorphism. So we want to

show that O([M] + [Mz]) = ©([M4]) + O([Ms]).
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Cobordism theory
The proof of the Thom Cobordism Theorem

Second step: We now want to show that the map
©: Qn(B,f) — n/L')m Tn+r( TBr, 00) is an homomorphism. So we want to

show that O([M] + [Mz]) = ©([M4]) + O([Ms]).

@ Choose [My],[M2] € Qn(B, f) and embeddings i; : My — R™
and i : M, — R™" which send M; and M, into different half
planes.

@ Also choose tubular neighbourhoods N! of My and N? of M,

n+r
Mo m R7

Hyperplane

M % R*"
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Cobordism theory
The proof of the Thom Cobordism Theorem

We obtain the map,

g collapsing STy N O[M;]vO[M,] TB,.

This is the same map as defined by the sum of homotopy classes:

O[Mi] + O[Mz] = O([Mi] + [M2]) = ©[M;] + O[M]

Hence © is a homomorphism.
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Cobordism theory
The proof of the Thom Cobordism Theorem

Third step: We now Show that

© : Qn(B,f) — lim mp4r(TB;,0)

is surjective,

We start by noting that S is compact, so for any open cover we can
find a finite subcover. That is, for some s, we have
Tfr 0 0(S™") C Th(vrys)-
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Cobordism theory
The proof of the Thom Cobordism Theorem

So we homotope the map Tf; 0§ : S"*" — Th(v, ) to a new
(homotopic) map 6 such that:
(i) §is differentiable on a neighbourhood of Gr(r, s).
(i) fis transverse regular on Gr(r, s), which is the zero section of
7Yr,s- This implies that 6=1(Gr(r, s)) is a manifold, i.e.
M = 6-1(Gr(r, s)). The dimension of M is
dimM = dim §='(Gr(r, s)) = n, since M has the same
codimension as Gr(r, s) in R,
(iii) Evaluating the map =" on a small neighbourhood of Gr(r, s)
gives us a tubular neighbourhood of M.
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Cobordism theory
The proof of the Thom Cobordism Theorem

Fourth step: To finish the proof we will show that the map © is
injective.

Let M be a (B, f) manifold, such that M € Ker(©). Then for some r, the
map ©(M) : S™" — TB, is homotopic to the trivial map
t: S™ — .
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Cobordism theory
The proof of the Thom Cobordism Theorem

Fourth step: To finish the proof we will show that the map © is
injective.

Let M be a (B, f) manifold, such that M € Ker(©). Then for some r, the
map ©(M) : S™" — TB, is homotopic to the trivial map

t: 8™ — 0.

By compactness of S"*", we have S"*' L TB, LA TBO;, so that,

S™" % [0,1] C Th(yrs) for some s> n.
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Cobordism theory
The proof of the Thom Cobordism Theorem

We now want to "deform" or homotope Tf, o Lto a map H; in a
neighbourhood of Gr(r, s). This map H, satisfies the following
properties:

(i) H, is differentiable on a neighbourhood of Gr(r, s).
(i) H, is transverse on Gr(r, s).
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Cobordism theory
The proof of the Thom Cobordism Theorem

We now want to "deform" or homotope Tf, o Lto a map H; in a

neighbourhood of Gr(r, s). This map H, satisfies the following

properties:

(i) H, is differentiable on a neighbourhood of Gr(r, s).

(i) H, is transverse on Gr(r, s).

This implies that,

(1) W = H7Y(Gr(r, s)) is a manifold, in fact a submanifold of
R™" x [0, 1].

(2) OW = Wna(S™" x[0,1]) = Mand OW C R™' x 0.

(3) Hylw is the normal map W “=2, 780,

By the covering homotopy theorem we deduce that [M] is the zero
class of Qu(B, f).
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Corbordism theory

The Thom Cobordism Theorem

So we have now proved the Thom Cobordism Theorem,

Qn(B, f) = ,/L”QOW”H(TB“ 00).
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Thank you for listening!
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